
Chapter 4

Farey Series And Related
Topics

“ . . . Beauty is the first test: there is no permanent place in the
world for ugly mathematics.”

—G.H. Hardy [29], p.85

4.1 Introduction

The Farey series of order N , denoted FN , is the ordered set of all irreducible
rational numbers h/k in the interval [0,1] with denominator k ≤ N . As exam-
ples, the Farey series of orders 1 through 7, F1 through F7, are shown in (4.1)
through (4.7).
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The distribution of Farey rational numbers in [0,1] is repeated in any [i, i+1],
i ∈ Z; so that the distribution of Farey rationals in [0,1] supplies complete
information about the distribution in all of R. We occasionally abuse the proper
nomenclature by referring to sequential rational numbers outside the interval
[0,1] as Farey terms or as part of FN , which, technically, they are not. All of
the results presented in this chapter, with the exception of results concerning
the number of terms, can be shown to apply everywhere in R+, so this abuse is
not harmful.
The study of the Farey series is a topic from number theory (a branch of

mathematics). The Farey series finds application in microcontroller work be-
cause very often it is economical to linearly scale an integer x using a rational
approximation of the form �hx/k�, h ∈ Z+, k ∈ N (a single integer multi-
plication followed by a single integer division with the remainder discarded).
The economy of this type of linear scaling comes about because many micro-
controllers have integer multiplication and division instructions. However, the
technique requires that we be able to choose h and k so as to place h/k as close
as possible to the real number rI that we wish to approximate; always subject to
the constraints h ≤ hMAX and k ≤ kMAX (since microcontroller multiplication
and division instructions are constrained in the size of the operands they can
accomodate).
Without the relevant results from number theory, it is very difficult to

find the rational numbers h/k: h ∈ Z+,≤ hMAX , k ∈ N,≤ kMAX closest
to an arbitrary rI ∈ R+, even for moderate choices of hMAX , kMAX (see Ex-
ample 4.1). A poorly-written brute-force algorithm might iterate over all h
and all k to find the rational numbers closest to rI ; and thus might be ap-
proximately O(hMAXkMAX). A refined brute-force algorithm might refine the
search and be approximately O(min(hMAX , kMAX)). However, for implemen-
tation on powerful computers which have machine instructions to multiply and
divide large integers, or for extended-precision integer arithmetic, even algo-
rithms which are O(min(hMAX , kMAX)) are not practical. The best algo-
rithm presented in this work (utilizing the framework of continued fractions), is
O(log max(hMAX , kMAX)), and so is practical even for very large hMAX and
kMAX .

Example 4.1: Find the rational numbers h/k which enclose 1/e ≈ 0.3678794412
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subject to the constraint k ≤ 216 − 1 = 65 535.1
Solution: 1/e is irrational, and so has left and right neighbors in the Farey
series of any order. Using algorithms that will be presented later in the work,
these two enclosing rational numbers subject to the constraint k ≤ 216 − 1 are
18 089/49 171 and 9 545/25 946.

4.2 History Of The Farey Series

The Farey series owes its name to John Farey, a British geologist who in 1816
published the statement to the effect that in the Farey series the middle of any
three consecutive terms is the mediant of the other two [69]2 (Thm. 4.10 in this
work). However, many mathematicians believe that credit for the Farey series
is misplaced, and that the series should not have been named after Farey. In A
Mathematician’s Apology ([29] pp. 81-82), Hardy cites the Farey series as one
of the rare examples in scientific history where credit is misplaced:

“ . . . Farey is immortal because he failed to understand a theorem
which Haros had proved perfectly fourteen years before . . . but on
the whole the history of science is fair, and this is particularly true
in mathematics . . . and the men who are remembered are almost
always the men who merit it.”

Hardy and Wright also provide a footnote about the history of the Farey
series, [58], pp. 36-37:

“The history of the Farey series is very curious. Theorems 28 and
293 seem to have been stated and proved first by Haros in 1802;
see Dickson, History, i. 156. Farey did not publish anything on
the subject until 1816, when he stated Theorem 29 in a note in the
Philosophical Magazine. He gave no proof, and it is unlikely that he
had found one, since he seems to have been at the best an indifferent
mathematician.

Cauchy, however, saw Farey’s statement, and supplied the proof
(Exercices de mathématiques, i. 114-116). Mathematicians generally
have followed Cauchy’s example in attributing the results to Farey,
and the results will no doubt continue to bear his name.”

[69]2 contains the best account of the history of the Farey series on the Web
(and contains information on many other interesting topics related to mathe-
matics and number theory, as well). At this site, Dr. Alexander Bogomolny has
included John Farey’s original letter to the Philosophical Magazine, and much

1This example is intended to demonstrate the difficulty of finding suitable rational numbers
near an arbitrary rI without the relevant results from number theory.

2Exact URL: http://www.cut-the-knot.com/blue/FareyHistory.html.
3Theorems 4.8 and 4.10, respectively, in this chapter.
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historical and human perspective. This site is highly recommended for anyone
who has an interest in mathematics, number theory, and history.

4.3 Properties Of Terms Of The Farey Series

In Section 4.1, we hinted that the properties of the Farey series (which, tech-
nically, consists of irreducible rational numbers h/k only in [0, 1]) hold in any
interval [n, n+1], n ∈ N. We would first like to show that if h/k ∈ [0, 1] is irre-
ducible, then any of its corresponding rational numbers (h + ik)/k in [i, i+ 1],
i ∈ N are also irreducible.

Theorem 4.2: Iff h/k, k ∈ N, h ∈ {0, 1, . . . , k} is irreducible, then

h

k
+ i =

h+ ik

k
(4.8)

is also irreducible for i ∈ Z+.
Proof: Let {pak

k } = pa11 pa22 . . . paM

M be the prime factorization of h. Let
{qbkk } = qb11 qb22 . . . qbMM be the prime factorization of k. The coprimality of h and
k ensures that {pak

k }
⋂{qbkk } = �. We are interested in the irreducibility (or

lack thereof) of

h

k
+ i =

pa11 pa22 . . . paM

M + i(qb11 qb22 . . . qbNN )
qb11 qb22 . . . qbNN

(4.9)

In order for the expression in (4.9) to be reducible, it is necessary for at least
one qk ∈ {q1, q2, . . . , qN} to divide the numerator, which is possible only if
{pk}

⋂{qk} �= �. (The degenerate cases of h = 1 or k = 1 are left for the reader
as Exercise 4.1.)
Remarks: On the other hand, if h/k is reducible, let {pak

k } = pa11 pa22 . . . paM

M

be the prime factors of h which do not appear in k, let {qbkk } = qb11 qb22 . . . qbNN be
the prime factors of k which do not appear in h, and let {sck

k } = sc11 sc22 . . . scL

L

be the prime factors which appear in both h and k. We are interested in the
irreducibility (or lack thereof) of

h

k
+ i =

{sck

k }{pak

k }+ i{sck

k }{qbkk }
{sck

k }{qbkk }
. (4.10)

It is clear that any choice of i ∈ Z+ will allow {sck

k } to divide both the numerator
and the denominator.
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Very frequently, it is necessary to compare rational numbers to determine
if they are equal; and if not, which is larger. This need occurs both in sym-
bolic manipulation (derivations and proofs), and in calculations. We present a
property which is useful for comparison of non-negative rational numbers.

Lemma 4.3: For a, c ≥ 0 and b, d > 0,

a

b
<

c

d
, iff ad < bc

a

b
=

c

d
, iff ad = bc

a

b
>

c

d
, iff ad > bc

(4.11)

Proof: Assume a, c ≥ 0 and b, d > 0. Under these assumptions, a/b < c/d ↔
a < bc/d ↔ ad < bc. Similarly, under the same assumptions, a/b = c/d ↔ a =
bc/d ↔ ad = bc and a/b > c/d ↔ a > bc/d ↔ ad > bc.
Remarks: Note it is not required that a, b, c, d ∈ Z, although this is the way in
which the lemma is used exclusively in this work. Note also that the lemma does
not cover the case when any of the components a, b, c, d are < 0. For comparing
rational numbers with non-negative components, this lemma presents the most
convenient method.

Some properties and results concerning the Farey series rely on the mediant
of two rational numbers, which is defined now.

Definition 4.4 (Mediant): Themediant of two [irreducible] rational numbers
h/k and h′/k′ is the [reduced form of the] fraction

h+ h′

k + k′ . (4.12)

Remarks: Note that the mediant of two rational numbers—even irreducible
rational numbers—is not necessarily irreducible. For example, the mediant of
1/3 and 2/3 is 3/6, which is not irreducible. Note also that the mediant of two
rational numbers is ambiguously defined if we don’t require that the rational
numbers be irreducible. For example, the mediant of 1/3 and 2/3 is 3/6 = 1/2,
but the mediant of 2/6 and 2/3 is 4/9 (a different number than 1/2). Normally,
in this work, we will calculate the mediant only of irreducible rational numbers,
and we will define the result to be the reduced form of the fraction calculated.

The mediant of two rational numbers always lies between them in value
(but is not necessarily the midpoint). A somewhat stronger statement about
mediants can be made, and is presented as Lemma 4.5, below.

Lemma 4.5: For a, c ≥ 0, b, d, i, j > 0, and a/b < c/d,
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a

b
<

ia+ jc

ib+ jd
<

c

d
, (4.13)

or, equivalently,

ia+ jc

ib+ jd
∈
(a

b
,

c

d

)
. (4.14)

Proof: Under the restrictions on a, b, c, d, i, and j; ad < bc → ijad < ijbc →
i2ab+ ijad < i2ab+ ijbc → ia(ib+ jd) < ib(ia+ jc)→ ia/ib < (ia+ jc)/(ib+
jd) (employing Lemma 4.3). A similar implication can be used to show that
(ia+ jc)/(ib+ jd) < jc/jd.
Remarks: A special case of this lemma is the result that the mediant of two
rational numbers is always between them (i = j = 1). This lemma gives some
insight into the arrangement of intermediate fractions between two convergents
(see Chapter 5, Continued Fractions And Related Topics).

Theorem 4.6: If h/k and h′/k′ are two successive terms of FN , then k+k′ >
N .
Proof: By Lemma 4.5, the mediant of h/k and h′/k′ lies between them, i.e.

h+ h′

k + k′ ∈
(

h

k
,
h′

k′

)
. (4.15)

Note that if k + k′ ≤ N , the denominator of the mediant, k + k′, is less than
N , so that either the fraction specified by (4.15) or its reduced form is in FN ;
hence there is another term between h/k and h′/k′ in FN . (See [58], Thm. 30,
p. 23.)

Theorem 4.7: For N > 1, no two consecutive terms of FN have the same
denominator.
Proof: Assume that h/k and h′/k are the two consecutive terms with the same
denominator. Note that the only choice of h′ which could be the numerator of a
consecutive term is h′ = h+1; otherwise we would have h/k < (h+1)/k < h′/k,
which implies that h/k and h′/k′ are not consecutive, a contradiction. With
h′ = h+1 (the only possibility), let’s examine the inequality h/k < h/(k−1) <
(h+1)/k. h/k < h/(k−1) is always true for any choice of k > 1. It can be shown
using Lemma 4.3 that h/(k − 1) < (h + 1)/k is true iff h < k − 1. So, for any
h ∈ {2, . . . , k − 2}, we can always use the fraction h/(k− 1) as an intermediate
term to show that h/k and (h + 1)/k are not consecutive in FN . If h = k − 1,
then we are considering the two fractions (k − 1)/k and k/k, and k/k cannot
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be in lowest terms—after reducing k/k the two fractions being considered no
longer have the same denominator. (See [58], Thm. 31, p. 24.)

Theorem 4.8: If h/k and h′/k′ are two successive terms of FN , then

h′k − hk′ = 1. (4.16)

Proof: For any h/k, Lemma 3.6 guarantees that an h′/k′ satisfying (4.16)
exists. If h′ = x0, k′ = y0 is a solution, then h′ = x0 + rh, k′ = y0 + rk, r ∈ Z
is also a solution, and Lemma 3.5 guarantees that any h′, k′ so chosen will be
coprime. Note that r can be chosen so that 0 ≤ N −k < k′ ≤ N , and that h’/k’
will be ∈ FN .

However, it still needs to be established that h′/k′ is the next term in FN
(i.e. that there can be no intervening terms). To show this, assume that an
intervening term a/b exists, so that h/k < a/b < h′/k′, with b ≤ N . In this
case, the distance from h/k to a/b is

a

b
− h

k
=

ak − bh

bk
≥ 1

bk
. (4.17)

Similarly, the distance from a/b to h′/k′ is

h′

k′ −
a

b
=

h′b− k′a
k′b

≥ 1
k′b

. (4.18)

(The inequalities in Eqns. 4.17 and 4.18 come about through Lemma 4.3—the
numerator in each case must be at least 1 if it is assumed h/k < a/b < h′/k′.)

The distance from h/k to h′/k′ is

h′

k′ −
h

k
=

h′k − hk′

kk′ =
1

kk′ . (4.19)

The distance from h/k to h′/k′ must be the sum of the distances from h/k to
a/b and from a/b to h′/k′:

(
h′

k′ −
h

k

)
=
(

a

b
− h

k

)
+
(

h′

k′ −
a

b

)
. (4.20)

Substituting (4.17), (4.18), and (4.19) into (4.20) leads to

1
kk′ ≥

1
bk
+
1

k′b
=

k′

bkk′ +
k

bkk′ =
k′ + k

bkk′ >
N

bkk′ >
1

kk′ , (4.21)
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a contradiction. Therefore, a/b must be h′/k′ and h′k − hk′ = 1. (See [58],
Thm. 28, p. 23, and the second proof on pp. 25-26.)

Lemma 4.9: For h/k, h′/k′ and h′′/k′′; h, h′, h′′ ∈ Z+, k, k′, k′′ ∈ N, with

h′k − hk′ = h′′k′ − h′k′′ = 1, (4.22)

(k′ > k′′)→
(

h′

k′ −
h

k
<

h′′

k′′ −
h

k

)
. (4.23)

Proof:

h′

k′ −
h

k
=
1

kk′ (4.24)

h′′

k′′ −
h

k
=
1

kk′′ (4.25)

(k′ > k′′)→
(
1

kk′ <
1

kk′′

)
(4.26)

Remarks: This lemma essentially says that if more than one potential suc-
cessor to h/k in FN , h′/k′ and h′′/k′′, both meet the necessary test provided
by Theorem 4.8, the potential successor with the largest denominator is the
successor, because it is closer to h/k. This lemma is used in proving Theorem
4.11.

Theorem 4.10: If h/k, h′/k′, and h′′/k′′ are three successive terms of FN ,
then

h′

k′ =
h+ h′′

k + k′′ . (4.27)

Proof: Starting from Theorem 4.8:

h′k − hk′ = h′′k′ − h′k′′ = 1 (4.28)

h′(k + k′′) = k′(h+ h′′) (4.29)

h′

k′ =
h+ h′′

k + k′′ . (4.30)
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4.4 Generation Of Terms Of The Farey Series

Earlier sections of this chapter have enumerated important properties of the
Farey series. However, these properties are of limited practical value because
they don’t help to solve practical problems in microcontroller work—one would
like to be able to generate (in order, of course) all of the terms of a Farey series
so that one can choose suitable terms near some rI ∈ R+ that one wishes to
approximate with rA = h/k.
Fortunately, the properties presented in earlier sections do allow the gener-

ation of successive Farey terms, as the following theorem shows.

Theorem 4.11: For a Farey series of order N ,

FN =
{

h0

k0
,
h1

k1
,
h2

k2
,
h3

k3
, . . .

}
, (4.31)

the recursive relationships in (4.32), (4.33), (4.34), and (4.35) apply.

hj =
⌊

kj−2 +N

kj−1

⌋
hj−1 − hj−2 (4.32)

kj =
⌊

kj−2 +N

kj−1

⌋
kj−1 − kj−2 (4.33)

hj =
⌊

kj+2 +N

kj+1

⌋
hj+1 − hj+2 (4.34)

kj =
⌊

kj+2 +N

kj+1

⌋
kj+1 − kj+2 (4.35)

Proof: Only (4.32) and (4.33) are proved—(4.34) and (4.35) come by symme-
try.

Assume that hj−2/kj−2 and hj−1/kj−1 are known and we wish to find hj/kj .

Note that by Theorem 4.8,

hj−1kj−2 − hj−2kj−1 = 1 (4.36)

and
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hjkj−1 − hj−1kj = 1. (4.37)

We desire to identify the set of rational numbers {hj/kj} that satisfy (4.37). If
this set is identified, by Lemma 4.9, we can simply choose the member of the
set that has the largest denominator.

Choose as trial solutions

hj = ihj−1 − hj−2 (4.38)

and

kj = ikj−1 − kj−2, (4.39)

where i ∈ Z is an integer parameter; i.e. define as the trial set of solutions all
hj/kj that can be formed by i ∈ Z substituted into (4.38) and (4.39). Substi-
tution of this trial solution into (4.37) yields

(ihj−1 − hj−2)kj−1 − hj−1(ikj−1 − kj−2) = hj−1kj−2 − hj−2kj−1 = 1. (4.40)

Thus, any solution in the form of (4.38, 4.39) will meet the necessary test posed
by Theorem 4.8.

However, we must also demonstrate that solutions of the form suggested by
(4.38, 4.39) are the only solutions which meet the necessary test posed by The-
orem 4.8, and also demonstrate how to pick the solution of this form with the
largest denominator kj ≤ N .

To demonstrate that (4.38, 4.39) are the only solutions, solve (4.37) for hj ,
yielding

hj =
hj−1

kj−1
kj +

1
kj−1

. (4.41)

Since hj−1 and kj−1 are known, it is clear that (4.41) defines a required linear
relationship between hj and kj , and that the only solutions are the values of
hj and kj meeting (4.41) which are integers. Assume that a particular integer
solution hj , kj to (4.41) is known and that a second integer solution ĥj , k̂j is
sought. In order for ĥj to be an integer, it must differ from hj by an integer,
implying
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hj−1

kj−1
(k̂j − kj) ∈ Z. (4.42)

It is easy to see from the form of (4.42) that because hj−1 and kj−1 are coprime,
in order for (4.42) to be met, k̂j − kj must contain every prime factor of kj−1

in at least equal multiplicity, implying |k̂j − kj | ≥ kj−1. It follows that (4.38,
4.39) are the only solutions which meet the necessary test posed by Theorem
4.8. We only need find the solution with the largest denominator.

Solving ikj−1 − kj−2 ≤ N for the largest integral value of i leads to

i =
⌊

kj−2 +N

kj−1

⌋
(4.43)

and directly to (4.32) and (4.33).

Given two consecutive Farey terms, Theorem 4.11 suggests a way to generate
as many neighboring terms as desired in either the descending or ascending
direction. Note that at an integer i, (iN − 1)/N , i/1, and (iN + 1)/N are
always consecutive terms in FN ; thus it is typically convenient to build the
Farey series starting at an integer. This method is presented as Algorithm 4.12.

Algorithm 4.12 (O(N2) Exhaustive Construction Algorithm For Find-
ing Enclosing Neighbors To rI In FN):

• Choose i = �rI + 1/2� as the integer from which to construct consecutive
Farey terms (i.e. the nearest integer to rI).

• Choose i/1 and (iN+1)/N as the two consecutive Farey terms from which
to start construction.

• Use (4.32) and (4.33) or (4.34) and (4.35) to construct Farey terms in the
increasing or decreasing direction until rI is enclosed.

4.5 Number Of Terms In The Farey Series

The number of terms4 C(N) in the Farey series of order N , FN , is

C(N) = 1 +
N∑
k=1

φ(k), (4.44)

4In the interval [0, 1] only.
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where φ(·) is Euler’s totient function [70]. The asymptotic limit for this function
C(N) is

C(N) ∼ 3N
2

π2
≈ 0.3040N2. (4.45)

Because the number of terms in FN is approximately O(N2), the method
presented in the previous section (Algorithm 4.12) is only practical for moderate
N (a few hundred or less). For Farey series of large order, building the Farey
series until rI is enclosed is not a practical method.
For example, F232−1 (a Farey series of interest for computer work, because

many processors can multiply 32-bit integers) contains about 1.8×1019 elements.
Even using a computer that could generate 109 Farey terms per second (an
unrealistic assumption at the time of this writing), building F232−1 between two
consecutive integers would require over 500 years. It is also noteworthy that
certainly 232 − 1 is not an upper bound on the order of Farey series that are
useful in practice—with scientific computers, it may be advantageous to be able
to find best approximations in F264−1, F2128−1, or Farey series of even higher
order.
Algorithm 4.12 is useful to illustrate concepts, or to find best approximations

in Farey series of moderate order. However, for Farey series of large order, this
algorithm isn’t usable. Chapter 5, Continued Fractions And Related Topics,
presents algorithms based on the framework of continued fractions which are
suitable for finding best rational approximations in Farey series of large order.

4.6 Probabilistic Results Surrounding |rI − rA|
If rational numbers of the form rA = h/k, subject to the constraint k ≤ kMAX ,
are used to approximate arbitrary real numbers rI , it might not be clear how
close we can “typically” choose rA to an aribtrary rI under the constraint.
We consider different asymptotics for the precision of the approximation of an
arbitrary rI by a rational number rA = h/k with k ≤ kMAX . For simplicity
of notation we denote α = rI and N = kMAX and assume, without loss of
generality, that α ∈ [0, 1].
We are thus interested in the asymptotic behaviour, when N → ∞, of the

quantity
ρN (α) = min

h/k∈FN

|α− h/k| ,

which is the distance between α and FN , the Farey series of order N .
The worst–case scenario is not very interesting: from the construction of

the Farey series we observe that for a fixed N the longest intervals between the
neighbours of FN are [0, 1/N ] and [1− 1/N, 1] and therefore for all N ,

max
α∈[0,1]

ρN (α) =
1
2N

. (4.46)
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(This supremum is achieved at the points 1/(2N) and 1− 1/(2N).)
However, such behaviour of ρN (α) is not typical: as is shown below, typical

values of the approximation error ρN (α) are much smaller.
First consider the behaviour of ρN(α) for almost all α ∈ [0, 1].5 We then

have (see [64], [65]) that for almost all α ∈ [0, 1] and any ε > 0, (4.47) and
(4.48) hold.

lim
N→∞

ρN(α)N2 log1+εN = +∞, lim inf
N→∞

ρN (α)N2 logN = 0 (4.47)

lim sup
N→∞

ρN (α)N2

logN
= +∞, lim

N→∞
ρN (α)N2

log1+εN
= 0 (4.48)

Even more is true: in (4.47) and (4.48) one can replace logN by logN log logN ,
logN log logN log log logN , and so on. Analogously, log1+εN could be replaced
by logN(log logN)1+ε, logN log logN(log log logN)1+ε, and so on.
These statements are analogues of Khinchin’s metric theorem, the classic

result in metric number theory, see e.g. [64].
The asymptotic distribution of the suitably normalized ρN (α) was derived

in [66]. A main result of this paper is that the sequence of functions N2ρN (α)
converges in distribution, when N → ∞, to the probability measure on [0,∞)
with the density given by (4.49).

p(τ) =



6/π2, if 0 ≤ τ ≤ 1
2

6
π2τ (1 + log τ − τ) , if 1

2 ≤ τ ≤ 2
3
π2τ

(
2 log(2τ)−4 log(√τ+

√
τ−2)−(√τ−√τ−2)2) ,

if 2 ≤ τ < ∞

(4.49)

This means that for all a, A such that 0 < a < A < ∞, (4.50) applies, where
‘meas’ denotes for the standard Lebesgue measure on [0, 1].

meas{α ∈ [0, 1] : a < N2ρN (α) ≤ A} →
∫ A

a

p(τ)dτ as N →∞ (4.50)

Another result in [66] concerns the asymptotic behavior of the moments
of the approximation error ρN (α). It says that for any δ �= 0 and N → ∞,
(4.51) applies, where ζ(·) and B(·, ·) are the Riemann zeta–function and the
Beta–function, respectively.

5A statement is true for almost all α ∈ [0, 1] if the measure of the set where this statement
is wrong has measure zero.
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δ + 1
2

∫ 1

0

ρδN (α)dα =



∞, if δ ≤ −1
3

δ2π2

(
2−δ + δ2δ+2B(−δ, 1

2 )
)

N−2δ (1+o(1)) ,
if −1<δ<1, δ �=0

3
π2 N−2 logN +O

(
N−2

)
, if δ = 1

2−δ ζ(δ)
ζ(δ+1)N−δ−1 +O

(
N−2δ

)
, if δ > 1

(4.51)

In particular, the average of the approximation error ρN (α) asymptotically
equals ∫ 1

0

ρN (α)dα =
3
π2

logN

N2
+O

(
1

N2

)
, N →∞ . (4.52)

Comparison of (4.52) with (4.48) shows that the asymptotic behavior of the
average approximation error

∫
ρN (α)dα resembles the behavior of the superior

limit of ρN (α). Even this limit decreases much faster than the maximum er-
ror maxα ρN (α), see (4.46): for typical α the rate of decrease of ρN (α), when
N → ∞, is, roughly speaking, 1/N2 rather than 1/N , the error for the worst
combination of α and N .
These results show that there is a significant advantage to using the Farey

series as the set from which to choose rational approximations, rather than more
naively using only rational numbers with the maximum denominator kMAX (as
is often done in practice).

4.7 Integer Lattice Interpretation Of The Farey
Series

The Farey series has a convenient and intuitive graphical interpretation involv-
ing the integer lattice (see Fig. 4.1, which illustrates this interpretation, but
with h also restricted). (By integer lattice, we mean the R2 plane with each
point (x, y), x, y ∈ Z, marked.) In such an interpretation, each rational number
h/k corresponds to a point (k, h) which is h units above and k units to the right
of the origin.
From the graphical interpretation suggested by Fig. 4.1, the following prop-

erties are intuitively clear.

• The angle of a ray drawn from the origin to the point (k, h) corresponding
to the rational number h/k is θ = tan−1 h/k.

• Any integer lattice point on a line from the origin drawn at the angle θ
has the value h/k = tan θ. All points corresponding to rational numbers
with the same value will be on such a line, and thus form an equivalence
class.
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Figure 4.1: Graphical Interpretation Of Rational Numbers h/k That Can Be
Formed With h ≤ hMAX = 3, k ≤ kMAX = 5

• A rational number h/k is irreducible iff its corresponding point (k, h) is
“directly” visible from the origin with no intervening points.

• The Farey series of order N , FN , can be formed graphically by starting
with the set of integer lattice points (k, h) : h ∈ Z+ ∧ 1 ≤ k ≤ N ,
then sweeping a line extended from the origin, starting with angle θ = 0,
through 0 ≤ θ < π/2, and recording in order each point directly visible
from the origin.6

Fig. 4.2 illustrates the graphical construction method of F5. Note that
only integer lattice points which are directly visible from the origin (with no
intervening points) are selected. (Fig. 4.2, like Fig. 4.1, shows the case of
constrained h—the integer lattice should be continued “upward” to construct
the Farey series.)

4.8 Generating FkMAX ,hMAX
Over A Rectangular

Region Of The Integer Lattice

In practice, FN does not represent the set of rational numbers that may be used
for rational approximation in an application; hence it isn’t usually appropriate
to choose a rational number from FN strictly as the theory of numbers defines
it. An actual application is parameterized not just by kMAX (the maximum

6Note that Fig. 4.1, because it illustrates the case when h is constrained as well, does
not show integer lattice points for h > hMAX . In principle, if the integer lattice shown in
Fig. 4.1 were extended indefinitely “upward”, every positive irreducible rational number with
k ≤ kMAX = 5 could be found graphically.
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Figure 4.2: Graphical Interpretation Of Irreducible Rational Numbers h/k That
Can Be Formed With h ≤ hMAX = 3, k ≤ kMAX = 5

denominator that may be chosen, which is considered in the definition of the
Farey series), but also by hMAX (the maximum numerator that may be cho-
sen). Typically, hMAX exists as a constraint because a machine multiplication
instruction is limited in the size of the operands it can accomodate; and kMAX
exists as a constraint because a machine division instruction is limited in the
size of the divisor it can accomodate.

In practice, the rational numbers that may be used for rational approxi-
mation represent a rectangular region of the integer lattice—all (k, h) : h ≤
hMAX ∧ k ≤ kMAX (Figs. 4.1, 4.2).

Fig. 4.1 supplies a graphical interpretation of all rational numbers that can
be formed with constraints h ≤ hMAX = 3 and k ≤ kMAX = 5. Each point
of the integer lattice shown in the figure is a rational number, not necessarily
irreducible. Because under this graphical interpretation a rational number is
irreducible iff it can be reached by a ray from the origin with no intervening
rational numbers, it is clear that the complete ordered set of irreducible rational
numbers that can be formed under the constraints h ≤ hMAX and k ≤ kMAX
can be obtained graphically by sweeping a ray from the origin through the
angles 0 ≤ θ < π/2, recording each point directly visible from the origin. This
graphical construction process is illustrated in Fig. 4.2.

From the graphical construction process shown in Fig. 4.2, it can be seen
that the set of irreducible rational numbers that can be formed subject to the
constraints h ≤ hMAX ∧ k ≤ kMAX is:
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{
0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
1
1

,
3
2

,
2
1

,
3
1

}
. (4.53)

We denote the ordered set of irreducible rational numbers that can be formed
subject to the constraints h ≤ hMAX ∧ k ≤ kMAX as FkMAX ,hMAX

.7

There are three important questions to be asked about the series FkMAX ,hMAX
:

• What are the smallest and largest rational numbers in FkMAX ,hMAX
? (This

question is easy: the smallest two rational numbers in FkMAX ,hMAX
are

0/1 and 1/kMAX , and the largest rational number is hMAX/1.)

• How do we construct FkMAX ,hMAX
?

• If we desire to approximate a real number rI , rIMIN ≤ rI ≤ rIMAX , using
a rational number selected from FkMAX ,hMAX

, how large might the error
|h/k − rI | be?

4.8.1 Construction Of FkM AX ,hM AX

To construct FkMAX ,hMAX
, for 0 ≤ θ ≤ tan−1(hMAX/kMAX)—the region of

the series where kMAX is the dominant constraint, i.e. below the “corner
point” in Figs. 4.1 and 4.2—note that these terms are simply FkMAX up
to hMAX/kMAX or its reduced equivalent.8 To construct FkMAX ,hMAX

for
tan−1(hMAX/kMAX) < θ < π/2—the region of the series where hMAX is the
dominant constraint, i.e. above the “corner point” in Figs. 4.1 and 4.2—note
that by a graphical argument of symmetry, these terms are the reciprocals of
ascending terms of FhMAX . For example, in Fig. 4.2, if the h- and k- axes
are transposed, it is easy to see that 3/1 in the original integer lattice would
correspond to 1/3 in the transposed integer lattice. This argument of symmetry
immediately suggests a procedure for constructing FkMAX ,hMAX

.

• Construct FkMAX from 0/1 up through hMAX/kMAX or its reduced equiv-
alent.

• Construct FhMAX from 1/hMAX up to kMAX/hMAX or its reduced equiv-
alent; then reverse the order of the terms and take the reciprocal of each
term.

• Concatenate the results from the two steps above.
7Notationally, in general, we use an overbar on the order of a Farey series to denote that

the terms are inverted and reversed in order. For example, F3 = {0/1, 1/3, 1/2, . . . }, but
F3 = {. . . , 2/1, 3/1}. Notation such as FA,B is an extension of that convention.

8If this is not intuitively clear, note in Figs. 4.1 and 4.2 that all of the terms of FkMAX
—

that is, all rational numbers, both reducible and irreducible, with k ≤ kMAX—are available
for selection until the “corner point” is reached.
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Example 4.13: Construct F5,3, the set of all irreducible rational numbers
h/k that can be formed with h ≤ hMAX = 3 and k ≤ kMAX = 5.9

Solution: (Using the method of construction presented above.) First, F5 up
through hMAX/kMAX = 3/5 or its reduced equivalent should be constructed.
This series is

F5 =
{
0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

, . . .

}
. (4.54)

Second, F3 is constructed from 1/3 up to kMAX/hMAX = 5/3 or its reduced
equivalent (not including the final term, 5/3). This series is

F3 =
{

. . . ,
1
3

,
1
2

,
2
3

,
1
1

,
4
3

,
3
2

, . . .

}
. (4.55)

Third, the terms of F3 are reversed in order, and the reciprocal of each term is
calculated, yielding

F3 =
{

. . . ,
2
3

,
3
4

,
1
1

,
3
2

,
2
1

,
3
1

}
. (4.56)

Finally, concatenating (4.54) and (4.56) yields F5,3, below.

F5,3 =
{
0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
1
1

,
3
2

,
2
1

,
3
1

}
(4.57)

It is clear that Thm. 4.11 and (4.32) through (4.35) can be used to construct
FkMAX ,hMAX

. However, such algorithms are not discussed because—even with
refinements—they can be no better than O(N) and are not fruitful to develop.
Instead, an O(logN) algorithm is presented in Chapter 5, Continued Fractions
And Related Topics.

4.8.2 Distance Between Terms Of FhM AX ,kM AX

The maximum distance between terms of FhMAX ,kMAX also establishes what we
call the maximum placement error, |rA−rI |, in choosing rA = h/k. Specifically,
the maximum distance is twice the maximum placement error. Clearly, with a
maximum distance specified, choosing rI = (x+ y)/2 for two successive terms x

9Note that F5,3 is the series depicted in Fig. 4.2, and this example can be verified against
the figure.
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h

k

(kMAX, hMAX)

kMAX

hMAX

O

h=k

Case I

Case IICase III

Figure 4.3: Three Cases For Bounding Distance Between Terms In FkMAX ,hMAX

and y separated by the maximum distance is the most antagonistic choice of rI
possible. We use the two notions (maximum distance and maximum placement
error) interchangeably and don’t bother to convert between them, as they are
the same notion and differ only by a factor of two.

It is clear from the earlier discussion of the Farey series that the maximum
distance between terms in FkMAX is 1/kMAX , and that this maximum distance
occurs only adjacent to an integer. It is also clear from the discussion of FhMAX

that the maximum distance between terms is 1.

Thus, when we use FkMAX ,hMAX
to approximate real numbers, in general

the worst-case distance between terms is 1.

In practical applications when rational approximation is used, the approx-
imation tends to be used over a restricted interval [l � 0, r � hMAX ] rather
than over the full range of the rational numbers that can be formed, [0, hMAX ].
This section develops novel upper bounds on the distance between terms of
FkMAX ,hMAX

in an interval [l, r]. For simplicity, assume l, r ∈ FkMAX ,hMAX
.

Three distinct cases are developed (Figure 4.3). The upper bound developed
from Case III is always larger than the upper bound developed from Case II,
which is always larger than the upper bound developed from Case I; so if only
the absolute maximum error over the interval [l, r] is of interest, only the highest-
numbered case which applies needs to be evaluated. However, some applications
may have different error requirements in different regions of the interval [l, r],
and for these applications it may be beneficial to analyze more than one case.
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Case I: rI < hMAX/kMAX

With rI < hMAX/kMAX , k ≤ kMAX is the dominant constraint, and the neigh-
bors available to rI are simply the terms of FkMAX . If [l, r] ∩ [0, hMAX/kMAX ]
includes an integer, clearly the maximum distance from rI to the nearest avail-
able term of FkMAX ,hMAX

is given by

∣∣∣∣hk − rI

∣∣∣∣ ≤ 1
2kMAX

, (4.58)

which is the same result for the Farey series in general.
If [l, r]∩ [0, hMAX/kMAX ] does not include an integer, it can be shown that

the maximum distance between Farey terms is driven by the rational number
with the smallest denominator in the interval [l, r].
For two consecutive terms p/q and p′/q′ in FkMAX , p′q−pq′ = 1 (Thm. 4.8),

so that

p′

q′
− p

q
=

p′q − pq′

qq′
=
1

qq′
. (4.59)

By Thm. 4.6, q + q′ > kMAX , therefore

1
qkMAX

≤ 1
qq′

<
1

q(kMAX − q)
. (4.60)

Let qMIN be the smallest denominator of any rational number ∈ FkMAX in
the interval [l, r]. It is then easy to show that for any consecutive denominators
q, q′ which occur in FkMAX in the interval [l, r],

1
qq′

<
1

qMIN max(qMIN , kMAX − qMIN )
. (4.61)

Thus, the upper bound on the distance between consecutive terms of FkMAX

in an interval [l, r] is tied to the minimum denominator of any rational number
∈ FkMAX in [l, r].
Note that clearly qMIN ≤ 1/(r− l), so for most practical intervals [l, r], the

search for qMIN would not be computationally expensive. However, applications
could arise where an approximation is used in an extremely narrow interval,
and having an algorithm available that is computationally viable for such cases
is advantageous. For example, locating the rational number ∈ F220,000 with
the smallest denominator in an interval of width 2−10,000 could be a serious
computational problem.
To locate qMIN in [l, r], note that at least one rational number with qMIN as

a denominator in [l, r] is the best approximation of order qMIN to the midpoint
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of the interval, (l + r)/2.10 By theorem ([59], Theorem 15), every best approx-
imation of a number is a convergent or intermediate fraction of the continued
fraction representation of the number. We seek the convergent or intermediate
fraction of (l+ r)/2 with the smallest denominator that is in the interval [l, r].11

The convergents and intermediate fractions of (l + r)/2 are naturally ar-
ranged in order of increasing denominator. However, it would be inefficient to
test every intermediate fraction for membership in [l, r], as partial quotients
ak are unlimited in size and such an algorithm may not be O(log kMAX).
Instead, since intermediate fractions are formed using the parameterized ex-
pression (ipk + pk−1)/(iqk + qk−1), and since intermediate fractions are ever-
increasing or ever-decreasing with respect to the parameter i, the smallest value
of i which will create an intermediate fraction potentially within [l, r] can be
directly calculated. Only the intermediate fraction formed with this calculated
value of i needs to be tested for membership in [l, r].
Let lN and lD be the numerator and denominator of l, and let rN and rD be

the numerator and denominator of r. In the case of k even; sk < l < (l + r)/2
(otherwise sk would have been identified as ∈ [l, r], see Algorithm 4.14); sk+1 ≥
(l+r)/2; with increasing i, (ipk+pk−1)/(iqk+qk−1) forms a decreasing sequence;
and the inequality we seek to solve is

ipk + pk−1

iqk + qk−1
≤ rN

rD
. (4.62)

Solving (4.62), the smallest integral value of i that will suffice is

i =
⌈

rNqk−1 − rDpk−1

rDpk − rNqk

⌉
. (4.63)

Similarly, for k odd, the sequence is increasing, and the inequality and solu-
tion are

ipk + pk−1

iqk + qk−1
≥ lN

lD
→ i =

⌈
lNqk−1 − lDpk−1

lDpk − lNqk

⌉
. (4.64)

(4.62), (4.63), and (4.64) suggest the following continued fraction algorithm
for finding a rational number with the smallest denominator in an interval [l, r].

Algorithm 4.14:

• Calculate all partial quotients ak and all convergents sk = pk/qk of the
midpoint of the interval, (l + r)/2.

10Thanks to David M. Einstein [39] and David Eppstein [24] for this observation, contributed
via the sci.math newsgroup [33], which is the linchpin of Algorithm 4.14.

11Regrettably, at this point the cart comes before the horse—the insight and algorithms
which follow are based on continued fractions, which are not covered until Chapter 5, Con-
tinued Fractions And Related Topics. We apologize for the potential necessity of reading this
work out of order.



42 CHAPTER 4. FAREY SERIES AND RELATED TOPICS

Figure 4.4: Graphical Interpretation Of Case II: hMAX/kMAX < rI < 1

• For each convergent sk = pk/qk, in order of increasing k:

• If sk = pk/qk ∈ [l, r], sk is a rational number with the lowest denomi-
nator, STOP.

• If k is even,

• Calculate i according to (4.63). If i < ak+1 and the intermediate
fraction (ipk + pk−1) / (iqk + qk−1) ≥ l, this intermediate fraction
is a rational number with the lowest denominator, STOP.

• Else if k is odd,

• Calculate i according to (4.64). If i < ak+1 and the intermediate
fraction (ipk + pk−1) / (iqk + qk−1) ≤ r, this intermediate fraction
is a rational number with the lowest denominator, STOP.

Algorithm 4.14 is approximately O(log kMAX), since there are a fixed num-
ber of steps per convergent, and the maximum number of convergents isO(log kMAX).
Once a rational number with the smallest denominator qMIN is located, (4.60)
can be applied to bound |rA − rI |; namely,

∣∣∣∣hk − rI

∣∣∣∣ <
1

2qMIN max(qMIN , kMAX − qMIN )
. (4.65)

Case II: hMAX/kMAX < rI < 1

If hMAX/kMAX < rI < 1, a graphical argument (Figure 4.4) can be used to
more tightly bound the maximum distance between terms of FkMAX ,hMAX

.
In this case, a formable term at or to the left12 of rI is represented by the

point (�hMAX/rI�+ 1, hMAX) in the integer lattice, and a formable term at or
12To the left on the number line, but to the right in Figure 4.4.
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to the right of rI is represented by the point (�hMAX/rI�, hMAX) in the integer
lattice. Thus, the maximum distance between neighboring terms in FkMAX ,hMAX

is given by the difference of these two terms,

hMAX⌊
hMAX

rI

⌋ − hMAX⌊
hMAX

rI

⌋
+ 1
=

hMAX⌊
hMAX

rI

⌋2
+
⌊
hMAX

rI

⌋ , (4.66)

and the maximum distance from rI to a neighboring term is given by

∣∣∣∣hk − rI

∣∣∣∣ ≤ hMAX

2
(⌊

hMAX

rI

⌋2
+
⌊
hMAX

rI

⌋) . (4.67)

Note that Case II will exist only if hMAX/kMAX < 1.

Case III: 1 < hMAX/kMAX < rI

It can be established graphically, using the coordinate system of Figure 4.1,
Figure 4.2, or Figure 4.3, that the line h = rIk intercepts the line h = hMAX
at the point (hMAX/rI , hMAX). It is clear from a graphical argument that all
of the terms of the Farey series of order �hMAX/rI� are available as neighbors
of rI . Therefore,

∣∣∣∣hk − rI

∣∣∣∣ ≤ 1

2
⌊
hMAX

rI

⌋ . (4.68)
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4.10 Exercises

[4.1] Prove that Theorem 4.2 holds in the degenerate cases where h = 1 and
where k = 1.
[4.2] Prove that Theorem 4.2 holds ∀i ∈ Z (rather than ∀i ∈ Z+) using the
slightly amended notion of reducibility that h/k is irreducible iff �h�/k is irre-
ducible.
[4.3] In Section 4.4 and Algorithm 4.12 it is stated that for i ∈ Z+, (iN−1)/N ,
i/1, and (iN + 1)/N are consecutive terms in the Farey series or order N , FN .
Prove that (iN − 1)/N and (iN + 1)/N are irreducible, and the left and right
Farey neighbors to i/1.
[4.4] Prove that in FN the maximum distance between terms 1/N can occur
only adjacent to an integer.
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Chapter 5

Continued Fractions And
Related Topics

“I began by saying that there is probably less difference between
the positions of a mathematician and a physicist than is generally
supposed, and that the most important seems to me to be this, that
the mathematician is in much more direct contact with reality . . .
mathematical objects are so much more what they seem. A chair
or a star is not in the least what it seems to be; the more we think
of it, the fuzzier its outlines become in the haze of sensation which
surround it; but ‘2’ or ‘317’ has nothing to do with sensation, and its
properties stand out the more clearly the more closely we scrutinize
it.”

—G. H. Hardy [29], pp. 128-130

5.1 Introduction

A finite simple continued fraction is a fraction of the form

a0 +
1

a1 +
1

a2 +
1

. . .+
1
an

= [a0; a1, a2, . . . , an], (5.1)

where a0 ∈ Z+ and ai ∈ N, i > 0. Each integer ai is called an element or
partial quotient of the continued fraction. We require, except in the case of the

45
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continued fraction representation of an integer, that the final element an not be
equal to 1.1

Continued fractions are quite unwieldly to write and typeset, and so a con-
tinued fraction in the form of (5.1) is written as [a0; a1, a2, . . . , an]. Note that
the separator between a0 and a1 is a semicolon (‘;’), and that all other sepa-
rators are commas (‘,’). In some works, commas are used exclusively; and in
other works, the first element is a1 rather than a0. Throughout this work, the
notational conventions illustrated in (5.1) are followed.
In this chapter, the framework of continued fractions is presented in the con-

text of finding rational numbers in FN , the Farey series of order N , enclosing
an arbitrary rI ∈ R+. The continued fraction algorithm presented (Algorithm
5.26) is O(logN), and so is suitable for finding the best rational approximations
in FN even when N is very large. Because our emphasis is on practical appli-
cations rather than number theory, we don’t include more information than is
necessary to understand the applications we have in mind.
The study of continued fractions is a topic from number theory (a branch

of mathematics). It may be counterintuitive to anyone but a number theorist
that continued fractions can be used to economically find best rational approx-
imations, or that continued fractions are anything but a parlor curiosity. C.D.
Olds ([61], p. 3) comments:

At first glance, nothing seems simpler or less significant than writing
a number, for example 9

7 , in the form

9
7
= 1 +

2
7
= 1 +

1
7
2

= 1 +
1

3 +
1
2

= 1 +
1

3 +
1

1 +
1
1

. (5.2)

It turns out, however, that fractions of this form, called “contin-
ued fractions”, provide much insight into mathematical problems,
particularly into the nature of numbers.

Continued fractions were studied by the great mathematicians of
the seventeenth and eighteenth centuries and are a subject of active
investigation today.

5.2 History Of Continued Fractions

The only work we are aware of that explicitly treats the history of continued
fractions is [57]. Although the history of continued fractions is complex, two
points are clear. First, it is clear that Euclid’s GCD algorithm (Algorithm 5.15),
which was known no later than around 300 B.C., represents the historical origin

1The reason for this restriction is discussed later.
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of the continued fraction. Second, it is clear that the utility of the apparatus
of continued fractions in finding best rational approximations—specifically the
properties of convergents—was understood by the 17th century.
In this section, we present some excerpts from [57] which show the very

early use of continued fractions to obtain best rational approximations with
a numerator and denominator less than certain prescribed limits. We simply
demonstrate that the technique we present was known by the 17th century (with
the possible exception of the second component of Theorem 5.20), and we don’t
attempt to describe the other uses of continued fractions or the significance of
continued fractions in mathematics or number theory.
Although we present best rational approximations in the context of being

able to effectively use processor integer multiplication and division instructions,
earlier historical work was aimed at either providing rational approximations to
irrational numbers (

√
2 or π, for example), or at determining optimal numbers

of gear teeth (in mechanical systems). Naturally, the need for best rational
approximations in the context of computer arithmetic is a relatively recent de-
velopment.
In the introduction of [57], Brezinski hints at the broad application and

importance of continued fractions:

The history of continued fractions is certainly one of the longest
among those of mathematical concepts, since it begins with Euclid’s
algorithm for the greatest common divisor at least three centuries
B.C. As it is often the case and like Monsieur Jourdain in Molière’s
“le bourgeois gentilhomme” (who was speaking in prose though he
did not know he was doing so), continued fractions were used for
many centuries before their real discovery.

The history of continued fractions and Padé approximants is also
quite important, since they played a leading role in the development
of some branches of mathematics. For example, they were the basis
for the proof of the transcendence of π in 1882, an open problem
for more than two thousand years, and also for our modern spectral
theory of operators. Actually they still are of great interest in many
fields of pure and applied mathematics and in numerical analysis,
where they provide computer approximations to special functions
and are connected to some convergence acceleration methods. Con-
tinued fractions are also used in number theory, computer science,
automata, electronics, etc. . . .

Notice that Theorem 5.20 has two components. First, it is shown that the
highest-order convergent with an acceptable denominator is closer to a/b than
any Farey neighbor to this convergent (thus, this convergent must be either a
left or right Farey neighbor of a/b). Second, it is shown what the other Farey
neighbor must be. It is historically clear that the properties of convergents as
best rational approximations were understood by the 17th century (this is the
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first part of Theorem 5.20). However, it is not historically clear when the second
part of Theorem 5.20 was discovered.
Even in Khinchin’s classic work, [59], Theorem 15, p. 22, Khinchin stops

just short of the result presented as the second part of Theorem 5.20. Khinchin
writes:

THEOREM 15. Every best approximation of a number is a conver-
gent or an intermediate fraction of the continued fraction represent-
ing that number.

Theorem 5.20 goes slightly farther than Khinchin’s THEOREM 15, above.
Khinchin states that a best approximation will be a convergent or an inter-
mediate fraction—but Theorem 5.20 goes slightly farther to indicate exactly
which intermediate fraction is potentially the best approximation. Khinchin’s
THEOREM 15 is correct, but could be strengthened. Khinchin’s work was first
published in 1935. This raises the [unlikely] possibility that the second part of
Theorem 5.20 had not been published even as recently as 1935, although we
(the authors) don’t have the ability to confirm or refute this.
In [57], p. 70, Brezinski writes:

In the same period, algorithms equivalent to continued fractions were
still used to find approximate values for ratios and to simplify frac-
tions. We have already mentioned Albert Girard.

Among the other authors who treated the subject, the most promi-
nent is Daniel SCHWENTER (Nürnberg, 31.1.1585 - Altdorf, 19.1.1636),
who wrote two books “Geometriae practicae novae et auctae tracta-
tus” published in 1627 and “Delicae Physico-mathematicae” which
appeared in 1636 followed by a second edition in 1651.

In his first book, Schwenter found approximations of 177/233 by find-
ing their g.c.d. and gave the successive convergents 79/104, 19/25,
3/4, 1/1, and 0/1. His calculations were arranged in a table2 . . .
although he gave no explanation of the method.

On p. 84, Brezenski writes:

Wallis also made use of continued fractions in his book “A trea-
tise of algebra both historical and practical” (published in 1685), to
approximate ratios with large numerators and denominators:

“Before I leave the business of Decimal Parts, and the advantages
which in practice may there cause; I have thought fit here to insert
a Process Of Reducing Fractions or Proportions to smaller termes,
retaining as near as may be, the just value.

It was occasion’d by a Problem sent me (as I remember) about the
Year 1663 or 1664, by Dr. Lamplugh the present Bishop of Exeter

2The table is reproduced in [57], but is omitted here.
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from (his Wives Father) Dr. Davenant then one of the Prebends
Residentaries of the Church of Salisbury, a very worthy Person, of
great Learning and Modesty; as I mire inderstand from persons well
acquainted with him, and by divers Writings of his which I have seen,
though I never had the opportunity of being personally acquainted
with him, otherwise than by Letter. And amongst his other Learning,
he was very well skilled the Mathematicks, and a diligent Proficient
therein.

He sent me (as it abovesaid) a Fraction (which what it was I do
not now particulary remember) who’s Numerator and Denominator
were, each of them of about six or seven places; and Proposed to find
the nearest Fraction in value to it, whose Denominator should not
be greater than 999.”

The Problem

A Fraction (or Proportion) being assigned, to sind one as near as
may be equal to it, in Numbers non exceeding a Number given, and
in the smallest Terms.

As (for instance), the Fraction 2684769
8376571 (or the Proportion of 2684769

to 8376571) being assigned, to sind one equal to it (if it may be) or
at least the next Greater, or the next Lesser, which may be expressed
in Numbers not greater than 999; that is, in numbers not exceeding
three places.

If the Fraction sought (whose terms are not to be greater than a
Number given) be the Next Greater than a Fraction Proposed; di-
vide the proposed Fractions Denominator by its Numerator: If the
Next-Lesser, then the Numerator by the Denominator, continuing
the Quotient in Decimal Parts, to such an Accuracy as shall be suffi-
cient; which Quotient for the Next-Greater, is to be the Denominator
answering to the Numerator 1: But for the next Lesser, it is to be the
Numerator answering to the Denominator 1: Completing a Fraction
as near as shall be necessary to that Proposed, which Fraction I call
to First Fraction Compleat: And the same wanting the Appendage
of Decimal parts, I call, the First Fraction Cartail’d.

Khen by this Appendage of the First Fraction, divide 1 Integer, and
by the Integer Number which is Next-Less then the sull Quotient,
(that is, in case such Quotient be just an Interger Number, by the
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Integer Next-Less than it; but is it be an Interger with Decimal parts
annexed, than by that Integer without those

Decimal parts;) multiply both Terms of the first Fraction Compleat,
(the Numerator and the Denominator;) And the Products of such
Multiplication, I call the Continual Increments of those Terms re-
spectively. And so much as the Appendage of Decimal parts in such
Continual Increment wants of 1 Integer, I call the Complements of
the Appendage of the continual Increment.

Then both to the Numerator and the Denominator of the First Frac-
tion, add (respectively) its continual Increment, which make the
Terms of the Second Fraction; and these again (respectively) in-
creased by the same Continual Increment, make the Terms of the
Third Fraction: And so onward, as long as the Fraction so arising
hath an Appendage, which is not less than the Complement of the
Appendage of the Continual Increment.

But where such Appendage becomes less than that Complement, that
Fraction I call the Last of the First Order; which also is to be the
First of the Second Order.”

Although Wallis’ archaic English above is difficult to decipher, it appears
that Wallis is describing the process of obtaining the convergents and interme-
diate fractions of the continued fraction representation of a rational number.

On p. 86, Brezenski writes:

We have already mentioned the Dutch mathematician and astronomer
Christiaan HUYGENS (The Hague, 14.4.1629 - The Hague, 8.6.1695).
He made several contributions to continued fractions and related
matters.

In 1682, Huygens built an automatic planetarium. To this end, he
used continued fractions, as described in his book “Descriptio au-
tomati planetarii”, which was published after his death (The Hague,
1698). In one year the earth covers 359◦ 45′ 40′′ 30′′′ and Saturn
12◦ 13′ 34′′ 18′′′, which gives the ratio 77708431/2640858.

For finding the smallest integers whose ratio is close to the preceding
one, he divided the greatest number by the smallest, then the small-
est by the first remainder, and so on, which is Euclid’s algorithm.
He thus got
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29 +
1

2 +
1

2 +
1

1 +
1

5 +
1

1 +
1

4 + . . .

for the ratio.

The fourth convergent of this continued fraction is 206/7, which
gave him the number of teeth for the gears of his planetarium, only
producing an error of 40′ in a century! [H. 177], [H. 272].

In a work, undated but not after 1687, he treats the general problem:

“Etant donnés deux grands nombres ayant entr’eux un certain rap-
port, en trouver d’autres plus petits pour les dents des roues qui ne
soient pas incommodes par leurs grandeurs et qui aient entr’eux à
peu près le même rapport, de telle facon qu’aucun couple de nom-
bres plus petits ne fournisse un rapport plus approchant de la vraie
valeur.”3

Thus Huygens was conscious of the property of best approximation
exhibited by continued fractions. He explained his method as fol-
lows:

“Pour trouver donc des nombres plus petits qui expriment approx-
imativement ce rapport, je divise le plus grand des nombres par le
plus petit, puis le plus petit par le reste de la première division et
ensuite ce reste par le noveau reste . . . Poursuivant ce calcul aussi
longtemps que possible, on parvient enfin par la division à un reste
1.”4

Then he makes the following comments:

“Or, lorsqu’on néglige à partir d’une fraction quelconque les derniers
termes de la série et celles qui la suivent, et qu’on réduit les autres
plus le nombre entier à un commun dénominateur, le rapport de ce
dernier au numérateur, sera voisin de celui du plus petit nombre

3English translation [103]: If we consider two large numbers forming a given ratio, we
need to find another set of smaller numbers for the teeth of the gearwheels, which are not
inconvenient in their size and which bear the very same ratio between them, in such a way
that no other pair of smaller numbers brings a ratio closer to the actual value.

4English translation [103]: Thus to find some smaller numbers that approximately express
this ratio, I divide the largest of the numbers by the smallest, then the smallest by the re-
mainder of the first division and then this remainder by the new remainder, continuing this
calculation as long as possible, we finally end up with a division into a remainder of 1.
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donné au plus grand; et la différence sera si faible qu’il serait impos-
sible d’obtenir un meilleur accord avec des nombres plus petits.”5

He proves this result and applies it to the continued fraction for π.

Let us give the opinion of the French astronomer Jean Baptiste
Joseph DELAMBRE (Amiens, 19.9.1749 - Paris, 19.8.1822), about
this part of Huygens’ work. It is quite interesting [H. 108]:

“ . . . ; enfin il décrit son planétaire.6

Ces sortes de machines ne sont que des objets de curiosité pour les
amateurs, ils sont absolument inutiles à l’Astronomie; celle d’Huygens
était destinée à montrer les mouvements elliptiques des planètes,
suivant les idées de Képler. Le problème à résoudre était celui-ci:
Etant donné deux grands nombres, trouver deux autres nombres plus
pitits et plus commodes, qui soient à peu près dans la même raison.
Il y emploie les fractions continues, et sans donner la théorie analy-
tique de ces fractions, il les applique à des exemples. Il trouve ainsi
le nombre des dents qui’il convient de donner aux roues.7

Cette propriété des fractions continues, parâıt à Lagrange, une des
principales découvertes d’Huygens. Cet éloge un peu exagéré fut
sans doute dicté à Lagrange par l’usage qu’il a su faire de ces frac-
tions dans l’Analyse. Quelques géomètres ont paru douter des avan-
tages de ces fractions et de l’utilité qu’elles peuvent avoir dans les
recherches analytiques. Quant au problème des rouages, il nous sem-
ble qu’on peut le résoudre d’une manière plus simple et plus com-
mode par l’Arithmétique ordinaire. Nous avons déjà appliqué notre
méthode aux intercalations du calendrier. Nous allons l’appliquer
aux deux exemples choisis par Huyhens.”8

Delambre concludes:
5English translation [103]: However, when, from an ordinary fraction, we neglect the last

terms of the run and the ones that follow, and when we reduce the others plus the integer to
a common denominator, the ratio of the latter to the numerator will be in the neighborhood
of the smallest given number to the largest; and the difference will be so small that it would
be impossible to obtain a better tune with some smaller numbers.

6English translation [103]: . . . ; finally, he describes his planetarium.
7English translation [103]: These kinds of machines are mere objects of curiosity for the

amateurs, completely useless to astronomy; Huygens’ machine was meant to demonstrate the
elliptic movements of the planets, following Kepler’s ideas. The problem to solve was the
following: given two large numbers, we need to find two other numbers, smaller and more
convenient, which are more or less in the same ratio. To achieve this, Huygens uses continued
ratios, and, without giving the analytic theory of these ratios, he applies it to some examples.
Thus, he is able to determine the number of teeth needed for the gearwheels.

8English translation [103]: The property of continued fractions seems, to Lagrange, one
of the main discoveries of Huygens. This slightly overdone praise was probably induced in
Lagrange for the use that he made of the fractions in his Analysis. Some surveyors seemed to
have questioned the advantages of these fractions and their use in analytical research. As far
as the gearing problem is concerned, it seems to us that we can solve it in a simpler and easier
way with ordinary arithmetic. We have already applied our methodology to the intercalation
of the calendar. We are going to apply it to the two examples chosen by Huygens.
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“Les fractions continues ne m’ont jamais paru qu’une chose curieuse
qui, au reste, ne servait qu’à obscurcir et compliquer et je n’en ai
jamais fait d’usage que pour m’en démontrer l’inutilité.”9

This was not a prophetic view!

Thus, it is clear that the use of continued fraction convergents as best rational
approximations dates back to at least the 17th century (this is the first part of
Theorem 5.20). However, the details of the historical appearance of the second
part of Theorem 5.20 (the formula for the other Farey neighbor, Eq. 5.71) are
not known to the authors.

5.3 Overview Of The Apparatus

The apparatus of continued fractions is best viewed as an alternate apparatus
for representing real numbers. Knowledge of the first n partial quotients of
the continued fraction representation of a real number x is equivalent to the
knowledge that the number lies in a certain partition (Eqns. 5.3, 5.4, and 5.5).
With additional partial quotients, the partitions become more restrictive.

(x = [a0] ∨ x = [a0; . . . ])↔ (a0 ≤ x < a0 + 1) (5.3)

(x = [a0; a1] ∨ x = [a0; a1, . . . ])↔
(

a0 +
1

a1 + 1
< x ≤ a0 +

1
a1

)
(5.4)

(x = [a0; a1, a2] ∨ x = [a0; a1, a2, . . . ])

�a0 +
1

a1 +
1
a2

≤ x < a0 +
1

a1 +
1

a2 + 1

 (5.5)

Algorithms for finding the continued fraction representation of a real number
are best viewed as algorithms for determining in which partition a real number
lies. However, what is special (for our purposes) is that the partitions imposed
by the apparatus of continued fractions have a special relationship with best ra-
tional approximations—namely, that all numbers (both rational and irrational)
with the same partial quotients up to a point also have the same Farey neigh-
bors up to a certain order. Stated more colloquially, the apparatus of continued
fractions hacks up the real number line in a way that is especially meaningful
for finding best rational approximations.

9English translation [103]: Continued fractions never appeared to me as something more
than a mere curiosity that, at the end of the day, only serves to darken and complicate
matters, and I only used them to demonstrate their uselessness.
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Table 5.1: Continued Fraction Partial Quotients Of 67/29 (Example 5.2)

Index dividendk divisork ak remainderk

(k)

-1 N/A 67 N/A 29

0 67 29 2 9

1 29 9 3 2

2 9 2 4 1

3 2 1 2 0

5.4 Continued Fraction Representation Of Ra-
tional Numbers

Without proof, we present the following algorithm, Algorithm 5.1, for deter-
mining the continued fraction representation (i.e. the partial quotients) of a
non-negative rational number a/b.

Algorithm 5.1 (Continued Fraction Representation Of A Rational
Number a/b):

• k := −1.

• divisor−1 := a.

• remainder−1 := b.

• Repeat

• k := k + 1.

• dividendk := divisork−1.

• divisork := remainderk−1.

• ak := dividendk div divisork.

• remainderk := dividendk mod divisork.

• Until (remainderk = 0).

Example 5.2: Find the continued fraction partial quotients of 67/29.10

Solution: Table 5.1 shows the application of Algorithm 5.1 to find the contin-

10This example is reproduced from Olds [61], p. 8.
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ued fraction partial quotients of 67/29. From Table 5.1, the continued fraction
representation of 67/29 is [2; 3, 4, 2].

The process of obtaining the continued fraction representation of a rational
number is a process of obtaining each partial quotient ai, and then processing
the remainder at each step to obtain further partial quotients. Noting that the
dividend and divisor at each step come from previous remainders (except for
k = 0 and k = 1) allows us to simplify notation from Algorithm 5.1. If ri is
used to denote the remainder from the division that produced ai, the following
recursive equations come immediately.

a

b
= a0 +

r0

b
= a0 +

1
b
r0

, 0 < r0 < b (5.6)

b

r0
= a1 +

r1

r0
, 0 < r1 < r0 (5.7)

r0

r1
= a2 +

r2

r1
, 0 < r2 < r1 (5.8)

Finally, nearing the termination of Algorithm 5.1:

rn−3

rn−2
= an−1 +

rn−1

rn−2
, 0 < rn−1 < rn−2 (5.9)

rn−2

rn−1
= an (5.10)

A natural question to ask is whether Algorithm 5.1 will always terminate—
that is, whether we can always find a continued fraction representation of a
rational number. We present this result as Lemma 5.3.

Lemma 5.3: Algorithm 5.1 will always terminate: that is, every rational
number has a finite continued fraction representation [a0; a1, . . . , an].
Proof: Note in Algorithm 5.1 and in (5.6) through (5.10) that the remainder
of one round becomes the divisor of the next round, hence the remainders must
form a decreasing sequence

r0 > r1 > r2 > . . . > rn−2 > rn−1, (5.11)

because in general a remainder must be less than the divisor in the division that
created it.
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5.5 Convergents And Intermediate Fractions

Lemma 5.3 shows that every rational number has a finite continued fraction
representation. A second reasonable question to ask is whether every finite
simple continued fraction corresponds to a rational number. The most convinc-
ing way to answer that question would be to devise a concrete procedure for
[re-]constructing a rational number from its continued fraction representation.
Given a finite continued fraction [a0; a1, . . . , an], it is obvious that a rational

number can be constructed using the same algebraic technique that would be
applied by hand. Such a technique involves “reconstruction from the right”
because we would begin by using an and then work backwards to a0. We
illustrate the most obvious technique with an example.

Example 5.4: Find a rational number a/b corresponding to the continued
fraction [2; 3, 4, 2].
Solution: The most obvious technique is to write out the continued fraction
and then to algebraically simplify the continued fraction from the bottom up
(this is what we call “working from the right”, as we begin with an). (5.12)
through (5.14) illustrate this technique.

[2; 3, 4, 2] = 2 +
1

3 +
1

4 +
1
2

(5.12)

[2; 3, 4, 2] = 2 +
1

3 +
2
9

(5.13)

[2; 3, 4, 2] = 2 +
9
29
=
67
29

(5.14)

Although converting a continued fraction [a0; a1, . . . , an] to a rational num-
ber working “from the right” is the most intuitively obvious technique because
it mirrors how a continued fraction would most naturally be simplified by hand,
it is also possible to convert a continued fraction to a rational number “from the
left”. In all subsequent discussions we embrace the “from the left” technique
because it allows us to more economically calculate convergents, which have
special properties, and which we now describe.
The kth order convergent of a continued fraction [a0; a1, . . . , an] is the irre-

ducible rational number corresponding to [a0; a1, . . . , ak], k ≤ n. In other words,
the kth order convergent is the irreducible rational number corresponding to the
first k + 1 partial quotients of a continued fraction.11

11“k + 1” because the notational numbering for partial quotients starts at 0 rather than 1.
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An nth order continued fraction [a0; a1, . . . , an] has n+ 1 convergents, [a0],
[a0; a1], . . . , and [a0; a1, . . . , an]. We denote the kth order convergent as sk,
with numerator pk and denominator qk.

Example 5.5: Find all convergents of [2; 3, 4, 2].
Solution:12

s0 = [a0] = [2] = 2 =
2
1
=

p0

q0
(5.15)

s1 = [a0; a1] = [2; 3] = 2 +
1
3
=
7
3
=

p1

q1
(5.16)

s2 = [a0; a1, a2] = [2; 3, 4] = 2 +
1

3 +
1
4

=
30
13
=

p2

q2
(5.17)

s3 = [a0; a1, a2, a3] = [2; 3, 4, 2] = 2 +
1

3 +
1

4 +
1
2

=
67
29
=

p3

q3
(5.18)

We now move on to the question of how to convert a continued fraction
to a rational number “from the left”. We present the canonical algorithm for
construction of convergents “from the left”. In addition to producing irreducible
rational numbers (we prove this property later), the algorithm is convenient
because it is economical—lower-order convergents are used in the calculation of
higher-order convergents and there are no wasted calculations.

Theorem 5.6 (Rule For Canonical Construction Of Continued Frac-
tion Convergents): The numerators pi and the denominators qi of the ith
convergent si of the continued fraction [a0; a1, . . . , an] satisfy the equations

pi = aipi−1 + pi−2 (5.19)
qi = aiqi−1 + qi−2 (5.20)

with the initial values
12Canonically, it is required that all convergents be irreducible. Any valid method can

be used to calculate convergents—including algebraic simplification—so long as the rational
numbers obtained are irreducible.
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p0 = a0, p1 = a0a1 + 1, (5.21)
q0 = 1, q1 = a1. (5.22)

Proof: 13 The proof is inductive. First, the case of i = 2 is verified, then an
inductive step is used to show that the theorem applies for i ≥ 3.
To create a canonical form, we assign s0 = [a0] = p0/q0 = a0/1. Thus, in all
cases, p0 = a0 and q0 = 1. Similarly, to create a unique canonical form,

s1 = [a0; a1] = a0 +
1
a1
=

a0a1 + 1
a1

=
p1

q1
, (5.23)

and canonically, p1 = a0a1 + 1 and q1 = a1.

For i = 2, we need to verify that the algebraic results coincide with the claims
of the theorem. Simplifying s2 algebraically leads to

s2 = [a0; a1, a2] = a0 +
1

a1 +
1
a2

= a0 +
1

a1a2 + 1
a2

= a0 +
a2

a1a2 + 1

=
a0(a1a2 + 1) + a2

a1a2 + 1
=

a2(a0a1 + 1) + a0

a2a1 + 1
.

(5.24)

On the other hand, applying the recursive formula claimed by the theorem
(Eqns. 5.19, 5.20) yields

s2 =
a2p1 + p0

a2q1 + q0
=

a2(a0a1 + 1) + a0

a2(a1) + 1
, (5.25)

which, on inspection, is consistent with the results of (5.24).

We now prove the inductive step. Assume that the recursive relationships sup-
plied as (5.19) and (5.20) hold up through some sk = pk/qk. We would like to
show that (5.19) and (5.20) then hold for sk+1.

sk is a fraction of the form

13Reproduced nearly verbatim from [61], Theorem 1.3, pp. 21-23.
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sk = [a0; a1, a2, . . . , ak] = a0 +
1

a1 +
1

a2 +
1

. . .+
1

ak−1 +
1
ak

. (5.26)

In order to form sk+1, note that we can replace ak by ak + 1/ak+1. (Note that
there is no requirement in Eqns. 5.19, 5.20, or 5.24 or 5.26 that the partial
quotients ai be integers.) In other words, we can form a kth order continued
fraction having the same value as a k + 1th order continued fraction by substi-
tuting ak := ak + 1

ak+1
. Using this substitution we can calculate sk+1 using the

same recursive relationship shown to be valid in calculating sk:

sk+1 =

(
ak +

1
ak+1

)
pk−1 + pk−2(

ak +
1

ak+1

)
qk−1 + qk−2

=
(akak+1 + 1)pk−1 + ak+1pk−2

(akak+1 + 1)qk−1 + ak+1qk−2

=
ak+1(akpk−1 + pk−2) + pk−1

ak+1(akqk−1 + qk−2) + qk−1

(5.27)

Now, we can use the assumption that the recursive relationships hold for sk, i.e.

pk = akpk−1 + pk−2 (5.28)
qk = akqk−1 + qk−2 (5.29)

Substituting (5.28) and (5.29) into (5.27) yields

sk+1 =
pk+1

qk+1
=

ak+1pk + pk−1

ak+1qk + qk−1
. (5.30)

This completes the inductive step and the proof.
Remarks: Note that this algorithm gives a way to convert a continued fraction
[a0; a1, . . . , an] to a rational number a/b, as the value of a continued fraction is
the value of the final convergent sn. Note also that it is possible to convert a
continued fraction to a rational number starting from an (i.e. working “from
the right”), and that starting with an is probably the more intuitive approach.

It is sometimes convenient to consider a convergent of order −1 ([59], p.
5), and for algebraic convenience to adopt the convention that p−1 = 1 and
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q−1 = 0. If this is done, the recursive relationships of Theorem 5.6 apply for
k ≥ 1 rather than for k ≥ 2. All of the subsequent theorems and proofs assume
this convention.
We now prove several properties of convergents.

Theorem 5.7: For all k ≥ 0,

qkpk−1 − pkqk−1 = (−1)k (5.31)

Proof: 14 Multiplying (5.19) by pk−1, multiplying (5.20) by qk−1, then sub-
tracting the equations yields

qkpk−1 − pkqk−1 = −(qk−1pk−2 − pk−1qk−2), (5.32)

and since q0p−1 − p0q−1 = 1, the theorem is proved.
Corollary I: For all k ≥ 1,

pk−1

qk−1
− pk

qk
=
(−1)k
qkqk−1

. (5.33)

Proof: (5.33) can be obtained in a straightforward way by algebraic operations
on (5.31).

Theorem 5.8: For all k ≥ 1,

qkpk−2 − pkqk−2 = (−1)k−1ak. (5.34)

Proof:15 By multiplying (5.19) by qk−2 and (5.20) by pk−2 and then subtracting
the first from the second, we obtain, on the basis of Theorem 5.7,

qkpk−2 − pkqk−2 = ak(qk−1pk−2 − pk−1qk−2) = (−1)k−1ak, (5.35)

which completes the proof.

The results in Theorems 5.7 and 5.8 allow us to establish the relative or-
dering of convergents. Theorems 5.7 and 5.8 demonstrate that even-ordered
convergents form an increasing sequence and that odd-ordered convergents form

14From [59], Theorem 2, p. 5.
15From [59], Theorem 3, p. 6.
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a decreasing sequence, and that every odd-ordered convergent is greater than
every even-ordered convergent.

Theorem 5.9: For all k ≥ 0, sk = pk/qk is irreducible.
Proof: This proof comes immediately from the form of (5.31). Without
coprimality of pk and qk, the difference of ±1 is impossible (see Lemma 3.5).

Example 5.10: Find an irreducible rational number a/b corresponding to the
continued fraction [2; 3, 4, 2].
Solution: Application of Theorem 5.6 yields the following convergents. The
final convergent s3 is the value of the continued fraction [2; 3, 4, 2] and Theorem
5.9 assures us that each convergent is irreducible.

p−1 = 1, q−1 = 0 (5.36)

s0 =
p0

q0
=

a0

1
=
2
1

(5.37)

s1 =
p1

q1
=

a1p0 + p−1

a1q0 + q−1
=
(3)(2) + (1)
(3)(1) + (0)

=
7
3

(5.38)

s2 =
p2

q2
=

a2p1 + p0

a2q1 + q0
=
(4)(7) + (2)
(4)(3) + (1)

=
30
13

(5.39)

s3 =
p3

q3
=

a3p2 + p1

a3q2 + q1
=
(2)(30) + (7)
(2)(13) + (3)

=
67
29

(5.40)

Note that this result coincides with Example 5.2.

We’ve shown in Algorithm 5.1 that any rational number can be expressed as
a continued fraction, and with Theorem 5.6 that any finite continued fraction
can be converted to a rational number. Although we don’t say more until
Section 5.7, it follows directly that any irrational number results in an infinite
(or non-terminating) continued fraction, and that any infinite continued fraction
represents an irrational number. In the theorems that follow, we don’t treat
infinite continued fractions with mathematical rigor, because our emphasis is
on specific applications of continued fractions.

Theorem 5.11: For a finite continued fraction representation of the [rational]
number α, every even-ordered convergent is less than α and every odd-ordered
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convergent is greater than α, with the exception of the final convergent sn,
which is equal to α. For an infinite continued fraction corresponding to the
[irrational] real number α, every even-ordered convergent is less than α, and
every odd-ordered convergent is greater than α.
Proof (Informal): In the case of a finite continued fraction, the proof is
obvious and immediate. Since sn, the final convergent, is equal to the rational
number α, Theorems 5.7 and 5.8 demonstrate this unequivocally.

In the case of an infinite continued fraction, note the form of the proof of
Theorem 5.6, where the substitution of ak := ak + 1/ak+1 is made. It can
be demonstrated that for any even-ordered convergent sk, additional partial
quotients (except ak+1 = an = 1, which isn’t allowed in general or even possible
with an infinite continued fraction) can only increase the value. It can similarly
be demonstrated that additional partial quotients can only decrease the value
of an odd-ordered convergent. Because the continued fraction is infinite, any
particular even-ordered convergent will be increased if more partial quotients are
allowed, and any particular odd-ordered convergent will be decreased in value if
more partial quotients are allowed. Thus, we can conclude that all even-ordered
convergents are less than the value of α, and all odd-ordered convergents are
greater than the value of α.16

Theorem 5.12: For k ≥ 2,

qk ≥ 2 k−1
2 . (5.41)

Proof:17 For k ≥ 2,

qk = akqk−1 + qk−2 ≥ qk−1 + qk−2 ≥ 2qk−2. (5.42)

Successive application of this inequality yields

q2k ≥ 2kq0 = 2k, q2k+1 ≥ 2kq1 ≥ 2k, (5.43)

which proves the theorem. Thus, the denominators of convergents increase at
least as rapidly as the terms of a geometric progression.
Remarks: (1) This minimum geometric rate of increase of denominators
of convergents is how we make the claim that Algorithms 5.26 and 5.31 are
O(log N) and that Algorithms 5.29 and 5.33 areO(log max(hMAX , kMAX)). (2)
This theorem supplies the minimum rate of increase, but the demonominators of
convergents can increase much faster. To achieve the minimum rate of increase,

16To make this proof more formal would require the discussion of remainders, which
wouldn’t contribute to the applications discussed in this work.

17From [59], Theorem 12, p. 13.
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every ak must be 1, which occurs only with the continued fraction representation
of
√
5/2 + 1/2 (the famous golden ratio). (See also Exercise 5.4.)

Since Theorem 5.6 provides a concrete procedure for going from a continued
fraction [a0; a1, . . . , an] to a rational number a/b that, when Algorithm 5.1 is
applied, will again result in [a0; a1, . . . , an], we have successfully demonstrated
that every continued fraction [a0; a1, . . . , an] corresponds to [at least one] ratio-
nal number a/b.
The next natural questions to ask are questions of representation unique-

ness and the nature of the mapping between the set of rational numbers and
the set of continued fractions. For example, will 32/100 and 64/200 have the
same continued fraction representation [a0; a1, . . . , an]? Do two different contin-
ued fractions ever correspond to the same rational number? We answer these
questions now.
Algorithm 5.1 will produce the same [a0; a1, . . . , an] for any ia/ib, i.e. all

rational numbers which are equivalent in value will generate the same continued
fraction representation (see Lemma 5.13).
It was hinted in the introduction (Section 5.1, Footnote 1) that, except in

the case of representing an integer, it is not allowed for the final partial quotient
an to be 1. We now explain the reasons why this must be disallowed. First,
if an = 1, then an−1 can be increased by 1 and the continued fraction can
be reduced in order by 1 and while still preserving its value. For example, it
can easily be verified that [1; 2, 3, 3, 1] and [1; 2, 3, 4] represent the same num-
ber. However, this observation alone is not enough to recommend a canonical
form—this observation does not suggest that [1; 2, 3, 4] should be preferred over
[1; 2, 3, 3, 1]. However, what can be noted is that that a continued fraction rep-
resentation with an = 1, n > 0 cannot be attained using Algorithm 5.1 or (5.6)
through (5.10), because a form with an = 1, n > 0 violates the assumption
that successive remainders are ever-decreasing (see Eq. 5.11). The property
that remainders are ever-decreasing is a necessary condition in proofs of some
important properties, and so requiring that an �= 1, n > 0 is the most natural
convention for a canonical form.

Lemma 5.13: Algorithm 5.1 will produce the same result [a0; a1, . . . , an] for
any ia/ib, i.e. a/b need not be reduced before the algorithm is applied.
Proof: Assume that a/b is irreducible, and that ia/ib, i ∈ {2, 3, . . .} is used as
input to the algorithm. By definition, any rational number with the same value
as a/b is of the form ia/ib, i ∈ N. Note that (5.6) through (5.10) “scale up”,
while still producing the same partial quotients [a0; a1, . . . , an]. Specifically:

ia

ib
= a0 +

ir0

ib
= a0 +

1
ib
ir0

(5.44)
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ib

ir0
= a1 +

ir1

ir0
(5.45)

ir0

ir1
= a2 +

ir2

ir1
(5.46)

Finally, nearing the termination of Algorithm 5.1:

irn−3

irn−2
= an−1 +

irn−1

irn−2
(5.47)

irn−2

irn−1
= an (5.48)

Thus, it is easy to show that Algorithm 5.1 will produce the same continued
fraction representation regardless of whether the input to the algorithm is re-
duced. It is also easy to show that the last non-zero remainder as the algorithm
is applied (rn−1, in Eqns. 5.47 and 5.48) is the greatest common divisor of ia
and ib (this is done in the proof of Algorithm 5.15).

Lemma 5.14: So long as an �= 1, n > 0, a rational number a/b has only one
[unique] continued fraction representation [a0; a1, . . . , an].
Proof: Assume that two different continued fractions, [a0; a1, . . . , am] and
[a0; a1, . . . , an], correspond to the same rational number a/b. By different, we
mean either that m = n but ∃i, ai �= ai, or that m �= n.

Note that Theorem 5.6 will map from any continued fraction to an irreducible
rational number a/b. Assume we apply Theorem 5.6 to [a0; a1, . . . , am] to pro-
duce a/b, and to [a0; a1, . . . , an] to produce a/b. Because two irreducible ratio-
nal numbers are equal iff their components are equal, [(a/b) = (a/b)] → [(a =
a) ∧ (b = b)]. Because a/b = a/b, we denote both of these numbers simply as
a/b.

By (5.50), a = a0b + r0 = a0b + r0, 0 < r0, r0 < b. Because r0, r0 < b, there is
only one combination of a0 and r0 or of a0 and r0 that can result in a. Thus, we
can conclude that a0 = a0 and r0 = r0. This type of reasoning, can be carried
“downward” inductively, each time fixing ai and ri. Finally, we must conclude
that (a/b = a/b)→ [a0; a1, . . . , am] = [a0; a1, . . . , an] and that m = n.
Remarks: The case of an = 1, n > 0 deserves further discussion. Theorem 5.6
will produce an irreducible rational number even if an = 1, n > 0. How is it that
uniqueness of representation can be claimed when clearly, for example, [2; 3, 4, 2]
and [2; 3, 4, 1, 1] are the same number? The answer is that an = 1, n > 0
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requires that rn−2 = rn−1 = 1, which violates the “uniqueness” assumption
used in fixing ai and ri in the proof above—specifically note that the condition
0 < rn−1 < rn−2 in (5.53) is violated. If one is allowed to violate the required
ever-decreasing remainders, then ai and ri cannot be uniquely fixed at each step
of the proof, above.

An intermediate fraction is a fraction represented by the continued fraction
representation of a k-th order convergent with the final partial quotient ak
reduced (this can naturally only be done when ak > 1). As Khinchin points out
([59], p. 14): “In arithmetic applications, these intermediate fractions play an
important role (though not as important a role as the convergents)”.
The intermediate fractions (of a k-th order convergent) form a monotonically

increasing or decreasing sequence of fractions ([59], p. 13):

pk−2

qk−2
,
pk−2 + pk−1

qk−2 + qk−1
,
pk−2 + 2pk−1

qk−2 + 2qk−1
, . . . ,

pk−2 + akpk−1

qk−2 + akqk−1
=

pk
qk

. (5.49)

Note in (5.49) that the first and last fractions are not intermediate fractions
(rather, they are convergents).

5.6 Euclid’s GCD Algorithm

The apparatus of continued fractions is closely related to Euclid’s GCD algo-
rithm (in fact, historically, Euclid’s GCD algorithm is considered a precursor
of continued fractions). It was noted in Lemma 5.13 that the last non-zero re-
mainder when Algorithm 5.1 is applied is the greatest common divisor of a and
b. In this section, we present Euclid’s algorithm, prove it, and show it similarity
to Algorithm 5.1.
Knuth ([3], p. 335) presents some background information about Euclid’s

GCD algorithm:

Euclid’s algorithm is found in Book 7, Propositions 1 and 2 of his
Elements (c. 300 B.C.), but it probably wasn’t his own invention.
Some scholars believe that the method was known up to 200 years
earlier, at least in its subtractive form, and it was almost certainly
known to Eudoxus (c. 375 B.C.); see K. von Fritz, Ann. Math.
(2) 46 1945, 242-264. Aristotle (c. 330 B.C.) hinted at it in his
Topics, 158b, 29-35. However, very little hard evidence about such
early history has survived [see. W. R. Knorr, The Evolution of the
Euclidian Elements (Dordrecht: 1975)].
We might call Euclid’s method the granddaddy of all algorithms,
because it is the oldest nontrivial algorithm that has survived to the
present day. (The chief rival for this honor is perhaps the ancient
Egyptian method for multiplication, which was based on doubling
and adding, and which forms the basis for efficient calculation of nth
powers as explained in section 4.6.3. . . . )
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Algorithm 5.15 (Euclid’s GCD Algorithm For Greatest Common Di-
visor Of Positive Integers a And b):18

• If (a < b), swap a and b.19

• Repeat
• r := a mod b.

• If (r = 0), STOP.
• a := b.

• b := r.

• Exit condition: b will be the g.c.d. of a and b.

Proof: Olds ([61], pp. 16-17) shows the relationship between Algorithm
5.1 and Euclid’s algorithm, and presents a proof, which is reproduced nearly
verbatim here.

First, note that d is the GCD of a and b iff:

• (Necessary Condition I) d divides both a and b, and

• (Necessary Condition II) any common divisor c of a and b divides d.

Essentially, we will prove that the final non-zero remainder when the algorithm
is applied meets the two criteria above, and hence must be the GCD of a and b.

Note that (5.6) through (5.10) can be rewritten as (5.50) through (5.54), which
make them consistent with the form Olds’ presents.

a = a0b+ r0, 0 < r0 < b (5.50)
b = a1r0 + r1, 0 < r1 < r0 (5.51)

r0 = a2r1 + r2, 0 < r2 < r1 (5.52)
. . .

rn−3 = an−1rn−2 + rn−1, 0 < rn−1 < rn−2 (5.53)
rn−2 = anrn−1 + 0, 0 = rn (5.54)

First, we will show that Necessary Condition I, above, is met. Note from (5.54)
that rn−1 | rn−2, since rn−2 is an integer multiple of rn−1. Note from (5.53)
that rn−1 | rn−3, since rn−3 is also an integer multiple of rn−1. This logic can be

18Knuth ([3], pp. 336-337) distinguishes between the original Euclidian algorithm and the
modern Euclidian algorithm. The algorithm presented here is more closely patterned after
the modern Euclidian algorithm.

19This step isn’t strictly necessary, but is usually done to save one iteration.
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Table 5.2: Euclid’s Algorithm Applied To Find Greatest Common Divisor Of
1,736,651 and 26,023 (Example 5.16)

Iteration a b r := a mod b

1 1,736,651 26,023 19,133

2 26,023 19,133 6,890

3 19,133 6,890 5,353

4 6,890 5,353 1,537

5 5,353 1,537 742

6 1,537 742 53

7 742 53 0

carried “upward” in the set of equations represented by (5.50) through (5.54),
and we can finally conclude that rn−1 | b and rn−1 | a. This proves Necessary
Condition I.

Second, we will show that Necessary Condition II, above, is met. This time, in
(5.50) through (5.54), we work top-down rather than bottom-up. Assume that c
is a divisor of a and a divisor of b. Then, from the form of (5.50), c divides r0.20

Similarly, from the form of (5.51), c divides r1. This rationale can be carried
“downward” to finally conclude that c divides rn−1. Thus, (c | a) ∧ (c | b) →
(c | rn−1), where rn−1 is the last non-zero remainder. This proves Necessary
Condition II.

Thus, rn−1 is the GCD of a and b.
Remarks: It is easy to observe that the only difference between Algorithm 5.1
and Algorithm 5.15 is that Algorithm 5.1 records the quotient of each division,
whereas Algorithm 5.15 does not.

Example 5.16: Use Euclid’s algorithm to find the greatest common divisor
of 1,736,651 and 26,023.
Solution: Table 5.2 shows the application of Algorithm 5.15 (Euclid’s GCD
algorithm) to find the greatest common divisor of 1,736,651 and 26,023. The
last non-zero remainder (and hence the greatest common divisor) is 53.
Remarks: The prime factorization of 1,736,651 is 151× 53× 31× 7, and the
prime factorization of 26,023 is 491× 53, which is consistent with the result in
Table 5.2.

20This implication may be counterintuitive at first glance. It concerns ”reachability” of
linear combinations of integers with a common divisor. Specifically, if a and b have a common
divisor c, any linear combination ia+ jb, (i, j ∈ Z), can “reach” only multiples of c. In (5.50),
(1)(a) + (−a0)(b) = r0, thus r0 must be a multiple of c. An identical argument applies for
(5.50) through (5.54).
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5.7 Continued Fraction Representation Of Irra-

tional Numbers

Irrational numbers (such as
√
2 or π) necessarily have infinite continued fraction

representations (i.e. the representations do not terminate). This is clear, since
Theorem 5.6 gives a concrete procedure for constructing a rational number from
any finite continued fraction; therefore a continued fraction corresponding to an
irrational number cannot be finite.
The algorithm for determining the partial quotients of an irrational number

is awkward, because it is a symbolic (rather than a numerical) algorithm. We
present the algorithm here for perspective and completeness, although it is not
often useful in practical engineering work. In practical work, an ordinary hand-
held calculator will supply a real number to far more precision than necessary,
and the displayed real number can be converted to a rational number for the
application of Algorithm 5.1. For practical work, it is rarely necessary to apply
a Algorithm 5.17.
The symbolic algorithm for determining the continued fraction partial quo-

tients of a real number is a recursive process very similar to the algorithm for
determining the continued fraction partial quotients of a rational number. The
essential activity is choosing the largest possible integer ai in each iteration.
Algorithm 5.17 begins by choosing the largest integer a0 not larger than x,

then expressing x as

x = a0 +
1
x1

. (5.55)

With a0 chosen, x1 can then be expressed as

x1 =
1

x− a0
. (5.56)

x1 can then be expressed as

x1 = a1 +
1
x2

, (5.57)

and a1, the largest integer not larger than x1, can be chosen. This process can
be continued indefinitely (with an irrational x, it won’t terminate) to determine
as many partial quotients as desired.

Algorithm 5.17 (Symbolic Algorithm For Obtaining Continued Frac-
tion Representation Of An Irrational Number x):

• x0 := x (the real number whose partial quotients are desired).

• k := −1.
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• Repeat
• k := k + 1.

• ak := �xk�.
• xk+1 :=

1
xk − ak

.

• Until (as many partial quotients as desired are obtained).

Example 5.18: Find the first several continued fraction partial quotients of√
3.

Solution: Applying Algorithm 5.17:

x0 := x =
√
3 (5.58)

k := −1 (5.59)

k := k + 1 = 0 (5.60)

a0 := �x0� = �
√
3� = 1 (5.61)

x1 :=
1

x0 − a0
=

1√
3− 1 =

√
3 + 1
2

(5.62)

k := k + 1 = 1 (5.63)

a1 := �x1� =
⌊√
3 + 1
2

⌋
= 1 (5.64)

x2 :=
1

x1 − 1 =
1

√
3+1
2 − 1

=
√
3 + 1 (5.65)
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k := k + 1 = 2 (5.66)

a2 := �x2� = �
√
3 + 1� = 2 (5.67)

x3 :=
1

(
√
3 + 1)− 2 =

√
3 + 1
2

(5.68)

Note that x3 = x1, so the algorithm will repeat with a3 = 1, a4 = 2, a5 = 1, a6 =
2, etc. Thus, the continued fraction representation of

√
3 is [1; 1, 2, 1, 2, 1, 2, . . . ]

= [1; 1, 2].
Remarks: It can be proved that all continued fractions that repeat or repeat
from some point onward represent real numbers of the form P±√

D
Q , whereD ∈ N

is not the square of an integer. It can also be shown that all numbers of this
form result in continued fractions that repeat or repeat from some point onward.
(See Olds [61], Chapter 4.) It is beyond the scope of our interest in continued
fractions to develop these properties.

5.8 Convergents As Best Approximations

Up until this point, we’ve presented general properties of continued fractions
and convergents without regard for practical applications. In this section, we
present results and algorithms to use the apparatus of continued fractions to
obtain best rational approximations.
Although we don’t dwell on other algorithms for locating best rational ap-

proximations (we present only the single best algorithm), it is worth noting
that there are many naive algorithms for locating best rational approximations.
These include:

• Exhaustive search of the integer lattice [O(hMAXkMAX)].

• Building the Farey series starting at an integer [O(max(hMAX , kMAX)2)]
(see Algorithm 4.12).

• Building the Farey series starting at a rational number with a large prime
denominator [O(max(hMAX , kMAX))].

• Building the Stern-Brocot tree (see Section 5.9) [O(max(hMAX , kMAX))].



5.8. CONVERGENTS AS BEST APPROXIMATIONS 71

Although we don’t justify it formally, the continued fraction algorithms pre-
sented here are O(log max(hMAX , kMAX)).21 The basis on which we make that
assertion is the geometric rate of increase of convergents (see Theorem 5.12),
which means that the number of steps required is tied to the logarithm of the
maximum denominator involved, as it is necessary to obtain partial quotients
and convergents only until qk ≥ max(hMAX , kMAX).

Theorem 5.19: In the case of an infinite continued fraction for k ≥ 0 or in
the case of a finite continued fraction for 0 ≤ k < n−1, a convergent sk = pk/qk
to a [rational or irrational] number α ∈ R+ satisfies

∣∣∣∣α− pk
qk

∣∣∣∣ <
1

qkqk+1
. (5.69)

In the case of a finite continued fraction with k = n− 1,

∣∣∣∣α− pk
qk

∣∣∣∣ = 1
qkqk+1

. (5.70)

Proof: The proof comes directly from Theorem 5.7 (Corollary I) and Theorem
5.11.
Remarks: Khinchin describes this result ([59], p. 9) as playing a basic role in
the arithmetic applications of continued fractions. In fact, this theorem is used
in the proof of Theorem 5.20.

We now present and prove the fundamental theorem of this chapter, which
gives an O(log N) algorithm for finding the enclosing neighbors in FN to an
arbitrary rational number a/b.22

Theorem 5.20 (Enclosing Neighbors Of x /∈ FN In FN): For a non-
21Well, not exactly. In the classical computer science sense (speaking only in terms of num-

ber of operations), the algorithms are O(log max(hMAX , kMAX)). However, if hMAX and
kMAX are increased beyond the sizes of integers that a computer can inherently accomodate,
one must use long integer calculation software, which requires more time for each integer op-
eration than is required for machine native integer sizes. As hMAX and kMAX are increased
far beyond integer sizes accomodated inherently by the computer, the relationship surely is
not O(log max(hMAX , kMAX)).

22Theorem 5.20 applies to irrational numbers as well, so long as one can obtain enough
partial quotients, but we don’t highlight this fact because it is rare in engineering applications
that one uses symbolic methods to obtain best rational approximations. As emphasized by
(5.3), (5.4), and (5.5), the process of obtaining partial quotients is essentially a process of
determining in which partition a number lies. All numbers in the same partition—rational
or irrational—have the same Farey neighbors in all Farey series up to a certain order. If the
partial quotients of an irrational number can be obtained up through ak s.t. sk = pk/qk is the
highest-order convergent with qk ≤ N , then this theorem can be applied. Knowledge of all
a0, . . . , ak is equivalent to the knowledge that the number is in a partition where all numbers
in that partition have the same Farey neighbors in all Farey series up through at least order
qk.
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negative rational number a/b not in FN which has a continued fraction represen-
tation [a0; a1, a2, . . . , an], the highest-order convergent sk = pk/qk with qk ≤ N
is one neighbor23 to a/b in FN , and the other neighbor in FN is24

⌊
N − qk−1

qk

⌋
pk + pk−1⌊

N − qk−1

qk

⌋
qk + qk−1

. (5.71)

Proof: First, it is proved that the highest-order convergent sk = pk/qk with
qk ≤ N is one of the two neighbors to a/b in FN . sk ∈ FN , since qk ≤ N . By
Theorem 5.19, the upper bound on the difference between a/b and arbitrary sk
is given by

∣∣∣∣ab − pk
qk

∣∣∣∣ <
1

qkqk+1
. (5.72)

For two consecutive terms in FN , Kh − Hk = 1 (Theorem 4.8). For a Farey
neighbor H/K to sk in FN , (5.73) must hold.

1
qkN

≤
∣∣∣∣HK − pk

qk

∣∣∣∣ (5.73)

qk+1 > N , because qk+1 > qk and pk/qk was chosen to be the highest-order
convergent with qk ≤ N . Using this knowledge and combining (5.72) and (5.73)
leads to (5.74).

∣∣∣∣ab − pk
qk

∣∣∣∣ <
1

qkqk+1
<
1

qkN
≤
∣∣∣∣HK − pk

qk

∣∣∣∣ (5.74)

This proves that sk is one neighbor to a/b in FN . The apparatus of continued
fractions ensures that the highest order convergent sk with qk ≤ N is closer to
a/b than to any neighboring term in FN . Thus, there is no intervening term of
FN between sk and a/b. If k is even, sk < a/b, and if k is odd, sk > a/b.

23By neighbors in FN we mean the rational numbers in FN immediately to the left and
immediately to the right of a/b.

24Theorem 5.20 is a somewhat stronger statement about best approximations than Khinchin
makes in [59], Theorem 15. We were not able to locate this theorem or a proof in
print, but this theorem is understood within the number theory community. It appears
on the Web page of David Eppstein [24] in the form of a ‘C’-language computer program,
http://www.ics.uci.edu/~eppstein/numth/frap.c. Although Dr. Eppstein phrases the so-
lution in terms of modifying a partial quotient, his approach is equivalent to (5.71).
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It must be proved that (5.71) is the other Farey neighbor. For brevity, only the
case of k even is proved: the case of k odd is symmetrical. (5.71) is of the form
(5.75), where i ∈ Z+.

ipk + pk−1

iqk + qk−1
(5.75)

k is even, sk < a/b, and the two Farey terms enclosing a/b, in order, are

pk
qk

,
ipk + pk−1

iqk + qk−1
. (5.76)

Applying the Kh−Hk = 1 test, (5.77), gives the result of 1, since by Theorem
5.7, qkpk−1 − pkqk−1 = (−1)k.

(qk)(ipk + pk−1)− (pk)(iqk + qk−1) = 1 (5.77)

Thus, every potential Farey neighbor of the form (5.75) meets the Kh−Hk = 1
test. It is also straightforward to show that only potential Farey neighbors of
the form (5.75) can meet the Kh−Hk = 1 test, using the property that pk and
qk are coprime.

It must be established that a rational number of the form (5.75) is irreducible.
This result comes directly from (5.77), since if the numerator and denominator
of (5.71) or (5.75) are not coprime, the difference of 1 is not possible.

The denominator of (5.71) can be rewritten as

N − [(N − qk−1) mod qk] ∈ {N − qk + 1, ..., N} . (5.78)

It must be shown that if one irreducible rational number—namely, the rational
number given by (5.71)—with a denominator ∈ {N − qk + 1, . . . , N} meets the
Kh − Hk = 1 test, there can be no other irreducible rational number in FN
with a larger denominator which also meets this test.

Given (5.77), and given that only rational numbers of the form (5.75) can meet
the Kh − Hk = 1 test, and given that any number of the form (5.75) is irre-
ducible, the irreducible number meeting the Kh − Hk = 1 test with the next
larger denominator after the denominator of (5.71) will have a denominator
∈ {N + 1, . . . , N + qk}. Thus, no other irreducible rational number in FN be-
sides that given by (5.71) with a larger denominator ≤ N and which meets
the Kh − Hk = 1 test can exist; therefore (5.71) is the other enclosing Farey
neighbor to a/b in FN .

Theorem 5.20 establishes that the two neighbors in FN to a rational number
a/b will be the highest-order convergent with a denominator not exceeding N ,
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and the number specified by (5.71). An interesting and worthwhile question to
ask about Theorem 5.20 is which of the two neighbors will be closer to a/b—the
convergent or the number specified by (5.71)? Can we make any strong, simple,
and easy-to-remember statements about the relative distance? We answer this
question and some related questions now.
We are not aware of any rules that decisively predict which of the two Farey

neighbors in Theorem 5.20 will be closer to a/b25, although Lemma 5.25 is able
to predict that the highest-ordered convergent sk with a denominator not ex-
ceeding N will be closer in many cases. In general, either neighbor may be
closer. The most straightforward approach that we are aware of is to calcu-
late both Farey neighbors and to calculate their respective distances from a/b.
The difficulty in devising a simple rule to predict which neighbor is closer is
compounded by that fact that knowledge of [a0; a1, . . . , ak] such that sk is the
highest-ordered convergent with qk ≤ N is incomplete knowledge of a/b and can
only confine a/b to an inequality in the sense suggested by (5.3) through (5.5).
Note that the value specified by (5.71) is an intermediate fraction, and that the
statement of Theorem 5.20 coincides with Khinchin’s Theorem 15 ([59], p. 22).
However, even in the absence of a rule to decisively predict which of the

two Farey neighbors specified by Theorem 5.20 is closer to a/b, there are other
useful properties of convergents as best approximations which we present now.
It has been stated earlier that even-ordered convergents form an increasing

sequence and that odd-ordered convergents also form a decreasing sequence.
However, up to this point, we have not made a statement about the relationship
between even- and odd-ordered convergents. We present such a statement as
Lemma 5.21, below.

Lemma 5.21: In the case of a finite or infinite continued fraction representa-
tion of a non-negative rational or irrational number α ∈ R+, for all k,

∣∣∣∣α− pk
qk

∣∣∣∣ <

∣∣∣∣α− pk−1

qk−1

∣∣∣∣ . (5.79)

In other words, convergents get ever-closer to α, without respect to whether
they are even- or odd-ordered convergents.
Proof: In this proof, we show that for all k,

|sk−2 − sk−1| > 2|sk−1 − sk|. (5.80)

To understand why the proof is valid, consider the case of k even, in which case
sk < α, so that sk−1 −α < sk−1 − sk. If sk−1 − sk−2 > 2(sk−1 − sk), then sk−2

25We should qualify this by saying that we mean a rule which uses only partial quotients
up through ak or at most ak+1, which is the same information used by the theorem. We
should also add that although Theorem 5.20 is worded to only consider non-negative rational
numbers, the theorem and the results here apply to non-negative irrational numbers as well,
so long as enough partial quotients can be obtained.
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is further to the left of α than sk−1 is to the right of α; thus (5.79) applies. A
symmetrical argument holds for k odd.

By Theorem 5.7,

sk−2 − sk−1 =
pk−2

qk−2
− pk−1

qk−1
=
(−1)k−1

qk−2qk−1
, (5.81)

and similarly

sk−1 − sk =
pk−1

qk−1
− pk

qk
=
(−1)k
qk−1qk

. (5.82)

In order for (5.80) to be met, it must be true that 2qk−2qk−1 < qk−1qk, or
equivalently that 2qk−2 < qk. Since canonically qk = akqk−1 + qk−2 (Eq. 5.29),
the requirement is that 2qk−2 < akqk−1 + qk−2. Since ak ≥ 1 and convergents
are ever-increasing, (5.80) is met and the lemma is proved.

Theorem 5.19 establishes a maximum distance from a number α that we
wish to approximate to a convergent. We now provide a second result that
establishes a minimum distance. (This result is Theorem 13, p. 15, from [59].)

Theorem 5.22: In the case of an infinite continued fraction representation
[a0; a1, a2, . . . ] of a non-negative irrational number α ∈ R+, for all k ≥ 0; or in
the case of a [necessarily finite] continued fraction representation [a0; a1, a2, . . . , an]
of a non-negative rational number α ∈ R+, for all 0 ≤ k ≤ n− 1,

∣∣∣∣α− pk
qk

∣∣∣∣ >
1

qk(qk+1 + qk)
. (5.83)

Proof: We’ve already established (Lemma 5.21) that each convergent sk+1 is
nearer to a number α to be approximated than the previous convergent, sk, i.e.
for all k,

∣∣∣∣α− pk+1

qk+1

∣∣∣∣ <

∣∣∣∣α− pk
qk

∣∣∣∣ . (5.84)

Since the mediant of two fractions always lies between them (Lemma 4.5), it
follows directly that

∣∣∣∣α− pk
qk

∣∣∣∣ >

∣∣∣∣pk + pk+1

qk + qk+1
− pk

qk

∣∣∣∣ = 1
qk(qk + qk+1)

. (5.85)



76 CHAPTER 5. CONTINUED FRACTIONS AND RELATED TOPICS

Remark I: This theorem can be combined with Theorem 5.19 to give the
following combined inequality:

1
qk(qk + qk+1)

<

∣∣∣∣α− pk
qk

∣∣∣∣ ≤ 1
qkqk+1

. (5.86)

We now supply an interesting and sometimes useful property of convergents
used as best approximations. Note that we later show that Lemma 5.23 is
a weak statement (a stronger statement can be made, Lemma 5.24), but this
lemma has the advantage of being extremely easy to remember.

Lemma 5.23: A convergent sk = pk/qk to a non-negative [rational or irra-
tional] number α ∈ R+ is closer to α than any other rational number with the
same or a smaller denominator.
Proof: Let α be the non-negative real number, rational or irrational, that we
wish to approximate.

If there is a number (let’s call it c/d) closer to α than sk = pk/qk, with the same
or a smaller denominator than sk, then by definition it must be in the Farey
series of order qk, which we denote Fqk

.

Theorem 5.20 assures us that the two Farey neighbors to α in Fqk
will be sk

and the number given by (5.71). Note that Theorem 5.20 applies to irrational
numbers as well (although the theorem statement does not indicate this), so we
interpret Theorem 5.20 in that sense.

Note in (5.71) that the expression involving the floor(·) function will evaluate
to be zero, since N = qk. Thus, the other Farey neighbor to α in Fqk

will be
sk−1 = pk−1/qk−1.

We have already shown in Lemma 5.21 that |α − sk−1| > |α − sk|, therefore
sk is closer to α than the other Farey neighbor given by (5.71). Furthermore,
because any c/d which is closer to α than sk must be present in Fqk

, such a c/d
does not exist.
Remark I: In practice, this lemma is little more than parlor trivia (it is
not mathematically significant), but it is useful information and very easy to
remember. For example, 355/113 is a convergent to π, and it is sometimes
useful to know that no better rational approximation can exist with the same
or a smaller denominator.
Remark II: A stronger statement can be made (see Lemma 5.24).

We now present a stronger statement about convergents as best approxima-
tions that is not as easy to remember as Lemma 5.23.

Lemma 5.24: A convergent sk = pk/qk to a non-negative [rational or irra-
tional] number α ∈ R+ is closer to α than any other rational number with a
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denominator less than qk + qk−1.
Proof: Let N be the denominator of a rational number which is potentially
closer to α than sk. If N < qk + qk+1, then (5.71) evaluates to sk−1, and
Lemma 5.21 has established that sk is closer to α than sk−1. If, on the other
hand, N ≥ qk + qk+1, then the intermediate fraction specified by (5.71) may be
closer to α than sk.
Remark I: This statement is harder to remember, but a stronger statement
than Lemma 5.23.
Remark II: Note that the only valid implication is N < qk+ qk+1 → (conver-
gent is closer). Note that N ≥ qk + qk+1 � (intermediate fraction is closer)! If
N ≥ qk+qk+1, either the convergent or the intermediate fraction may be closer.
This statement is harder to remember, but a stronger statement than Lemma
5.23.

Finally, we present a result about Theorem 5.20 that will predict in some
circumstances that the highest-ordered convergent sk with a denominator not
exceeding N must be closer to a/b than the intermediate fraction specified by
(5.71).

Lemma 5.25: In Theorem 5.20, if N < qk + qk−1, the highest ordered
convergent sk with a denominator not exceeding N is closer to a/b26 then the
intermediate fraction specified by (5.71). If N ≥ qk + qk−1, either sk or the
intermediate fraction specified by (5.71) may be closer.
Proof: See the proof of Lemma 5.24.

Theorem 5.20 immediately suggests an algorithm for obtaining the enclosing
rational numbers in FN to a rational number a/b /∈ FN , which we present as
Algorithm 5.26. Although we don’t formally show it, the algorithm is O(log N),
due to the minimum geometric rate of increase of convergents (Theorem 5.12).
Note that the algorithm will proceed only until qk > N , not necessarily until
all partial quotients of a/b are obtained. Note also that the algorithm can be
applied to irrational numbers with minor modification (all that matters is that
we can obtain enough partial quotients).

Algorithm 5.26 (Enclosing Neighbors Of a/b /∈ FN In FN):

• k := −1.
• divisor−1 := a.

• remainder−1 := b.

• p−1 := 1.

• q−1 := 0.
26Note that this result is also valid for convergents to an irrational number, although The-

orem 5.20 is not worded in this way.
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Table 5.3: Application Of Algorithm 5.26 To Find Members Of F100 Which
Enclose 10,000/16,093 (Example 5.27)

Index dividendk divisork ak remainderk pk qk

(k)

-1 N/A 10,000 N/A 16,093 1 0

0 10,000 16,093 0 10,000 0 1

1 16,093 10,000 1 6,093 1 1

2 10,000 6,093 1 3,907 1 2

3 6,093 3,907 1 2,186 2 3

4 3,907 2,186 1 1,721 3 5

5 2,186 1,721 1 465 5 8

6 1,721 465 3 326 18 29

7 465 326 1 139 23 37

8 326 139 2 48 64 103

• Repeat

• k := k + 1.

• dividendk := divisork−1.

• divisork := remainderk−1.

• ak := dividendk div divisork.

• remainderk := dividendk mod divisork.

• If k = 0 then pk := ak else pk := akpk−1 + pk−2.

• If k = 0 then qk := 1 else qk := akqk−1 + qk−2.

• Until (qk > kMAX).

• sk−1 = pk−1/qk−1 will be one Farey neighbor to a/b in FkMAX . Apply (5.71)
to obtain the other Farey neighbor.

Example 5.27: Find the members of F100 which enclose the conversion factor
from kilometers-per-hour to miles-per-hour. Assume that one mile is 1.6093
kilometers (exactly).
Solution: The conversion factor from KPH to MPH is the reciprocal of
1.6093. As a rational number, 1.6093 is 16,093/10,000, so 10,000/16,093 is
its exact reciprocal. Applying Algorithm 5.26 with a/b = 10, 000/16, 093 and
kMAX = 100 yields Table 5.3.

Note from Table 5.3 that the 7-th order convergent, s7 = 23/37, is the highest-
ordered convergent with qk ≤ 100, so by Theorem 5.20, 23/37 is one neighbor
in F100 to 10,000/16,093. Because s7 is an odd-ordered convergent, it will be
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Table 5.4: Application Of Algorithm 5.26 To Find Members Of F100 Which
Enclose

√
3 (Example 5.28)

Index (k) ak pk qk

-1 N/A 1 0

0 1 1 1

1 1 2 1

2 2 5 3

3 1 7 4

4 2 19 11

5 1 26 15

6 2 71 41

7 1 97 56

8 2 265 153

9 1 362 209

the right Farey neighbor. By (5.71), the other Farey neighbor is 41/66, and it
will be the left Farey neighbor.

Example 5.28: Find the members of F200 which enclose
√
3.

Solution: We demonstrated in Example 5.18 that the continued fraction
representation of

√
3 is [1; 1, 2]. As is highlighted in Footnote 22, it isn’t required

that a number be rational to apply Theorem 5.20, so long as enough partial
quotients can be obtained. Using knowledge of the partial quotients of

√
3 and

applying Algorithm 5.26 yields Table 5.4 (note that it isn’t necessary to track
remainders, as we already have all of the partial quotients for

√
3).

Note from Table 5.4 that the 8-th order convergent, s8 = 265/153, is the highest-
ordered convergent with qk ≤ 200, so by Theorem 5.20, 265/153 is one neighbor
in F100 to

√
3. Because s8 is an even-ordered convergent, it will be the left Farey

neighbor. By (5.71), the other Farey neighbor is 97/56, and it will be the right
Farey neighbor.

It is clear that Algorithm 5.26 can be trivially modified to find enclosing
neighbors in FkMAX ,hMAX

, and we present this trivial modification as Algorithm
5.29.

Algorithm 5.29 (Enclosing Neighbors Of x /∈ FkMAX,hMAX
In FkMAX,hMAX

):

• If a/b < hMAX/kMAX , apply Algorithm 5.26 directly;

• Else if a/b > hMAX/kMAX , apply Algorithm 5.26 using b/a rather than a/b
as the input to the algorithm, using hMAX rather than kMAX as N , and
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Table 5.5: Application Of Algorithm 5.29 To Find Members Of F100 Which
Enclose 1/

√
3 (Example 5.30)

Index (k) ak pk qk

-1 N/A 1 0

0 0 0 1

1 1 1 1

2 1 1 2

3 2 3 5

4 1 4 7

5 2 11 19

6 1 15 26

7 2 41 71

8 1 56 97

9 2 153 265

using the reciprocals of the results of the algorithm.27

Example 5.30: Find the members of F200,100 which enclose
√
3.

Solution: It was shown in Example 5.28 that the two enclosing neighbors
to
√
3 in F200 are 265/153 and 97/56. Note that the first of these neighbors,

265/153, violates the constraint on the numerator. As explained in Section
4.8, because

√
3 > 100/200, the constraint on the numerator is the dominant

constraint, and the necessary approach is to find the neighbors of 1/
√
3 in

F100, then invert the results. Although we don’t explain it in this work, the
reciprocal of a continued fraction can be formed by “right-shifting” or “left-
shifting” the continued fraction one position. Thus, if [1; 1, 2, 1, 2, 1, 2, . . . ] =
[1; 1, 2] is the continued fraction representation of

√
3, then [0; 1, 1, 2, 1, 2, 1, . . . ]

= [0; 1, 1, 2] is the continued fraction representation of 1/
√
3. Using this result

and constructing the convergents until qk ≥ 100 yields Table 5.5.
Note from Table 5.5 that the 8-th order convergent, s8 = 56/97, is the highest-
ordered convergent with qk ≤ 100, so by Theorem 5.20, 56/97 is one neighbor
in F100 to 1/

√
3. Because s8 is an even-ordered convergent, it will be the left

Farey neighbor. By (5.71), the other Farey neighbor is 41/71, and it will be the
right Farey neighbor. Taking the reciprocal of these neighbors (and reversing
their order) yields 97/56 <

√
3 < 41/71 as the two members of F200,100 which

enclose
√
3.

A natural question to ask is whether, given only a single rational number
a/b ∈ FN , the apparatus of continued fractions can be used to economically find

27The basis for taking the reciprocals of input and output and using hMAX rather than
kMAX are explained in Section 4.8.
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Table 5.6: Partial Quotients And Convergents Of 5/7 (Example 5.32)

Index (k) dividendk divisork ak remainderk pk qk

-1 N/A 5 N/A 7 1 0

0 5 7 0 5 0 1

1 7 5 1 2 1 1

2 5 2 2 1 2 3

3 2 1 2 0 5 7

its neighbors in FN . Examining the proof of Theorem 5.20, we see that the entire
proof applies even if the denominator of the highest-order convergent, qn, is less
than or equal to N—that is, the number specified by (5.71) is a left or right
Farey neighbor in FN of a/b. If n is even, sn−1 > sn, and the number specified
by (5.71) will be the right Farey neighbor of sn, and (4.34) and (4.35) can be
used to find the left Farey neighbor. On the other hand if n odd, sn−1 < sn,
(5.71) will be the left Farey neighbor of sn, and (4.32) and (4.33) can be used to
find the right Farey neighbor. We summarize these observations as Algorithm
5.31.

Algorithm 5.31 (Neighbors Of a/b ∈ FN In FN):

• Apply the first part of Algorithm 5.26 to obtain all of the partial quotients
and convergents of a/b. The final convergent, sn = pn/qn, will be a/b in
reduced form.

• Use (5.71) (with k = n) to obtain the right Farey neighbor (if n is even) or
the left Farey neighbor (if n is odd).

• If n is even, sn−1 > sn, and the number specified by (5.71) will be the right
Farey neighbor of sn. Use (4.34) and (4.35) to find the left Farey neighbor.
On the other hand if n is odd, sn−1 < sn, (5.71) will be the left Farey
neighbor of sn. Use (4.32) and (4.33) to find the right Farey neighbor.

Example 5.32: Find the neighbors of 5/7 in F1,000,000.
Solution: As per Algorithm 5.31, the first step is to obtain the partial quo-
tients and convergents of 5/7 (these partial quotients and convergents are shown
in Table 5.6).

Since the final convergent, s3, is an odd-ordered convergent, sk−1 < sk, and
(5.71) will supply the left Farey neighbor of 5/7. Applying (5.71) with N =
1, 000, 000, k = 3, k − 1 = 2, pk = 5, qk = 7, pk−1 = 2, and qk−1 = 3 yields
714,282
999,995 as the left Farey neighbor of 5/7 in F1,000,000. Application of (4.32) and
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(4.33) yields 714,283
999,996 as the right Farey neighbor.

Algorithm 5.33 (Neighbors Of x ∈ FkMAX,hMAX
In FkMAX ,hMAX

):

• If a/b < hMAX/kMAX , apply Algorithm 5.31 directly;

• Else if a/b > hMAX/kMAX , apply Algorithm 5.31 using b/a rather than a/b
as the input to the algorithm, using hMAX rather than kMAX as N , and
using the reciprocals of the results of the algorithm.28

5.9 The Stern-Brocot Tree

In this chapter, we’ve developed continued fraction techniques of best rational
approximation without reference to any other models or theory. Because the
algorithms presented in this chapter are O(log N), the results so far are com-
pletely satisfactory and usable in practice. It is not necessary to go further or
to present additional information.
However, there is a second model of best rational approximation (and a sec-

ond set of algorithms), involving the Stern-Brocot tree. In fact, when reviewing
the material in this chapter, some readers have inquired why the Stern-Brocot
tree was not used.29 In this section, we introduce the Stern-Brocot tree, demon-
strate how to construct it, mention its major properties, show its correspondence
with the apparatus of continued fractions, and finally show why we must use
the apparatus of continued fractions to find best rational approximations.

5.9.1 Definition And Properties Of The Stern-Brocot Tree

The Stern-Brocot tree (Figure 5.1), is an infinite binary tree which contains all
positive rational numbers.
To construct the tree, one begins with the two fractions 0

1 and
1
0 , and forms

the mediant (see Definition 4.4) of two adjacent fractions as many times as
desired to generate additional fractions. Figure 5.1 illustrates the construction
process. Note in Figure 5.1 that the adjacent fractions are always above and to
the left and above and to the right of the fraction being constructed, and that
in the construction of the Stern-Brocot tree, one of the adjacent fractions can
be many levels upwards in the tree from the fraction being constructed. For
example, in Figure 5.1, when constructing the fraction 4/5, the left adjacent
fraction (3/4) is nearby in the figure, but the right adjacent fraction (1/1) is
three levels up to the left and one level up to the right. Note when constructing
the fraction 4/5 that its right adjacent fraction is not 4/3.

28The basis for taking the reciprocals of input and output and using hMAX rather than
kMAX are explained in Section 4.8.

29In brief, the Stern-Brocot tree was not used because the resulting algorithms are O(N),
and so will introduce practical computational difficulties when used with large integers.
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0/1 1/0

1/1

1/2 2/1

1/3 2/3 3/2 3/1

1/4 2/5 3/5 3/4

1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5

4/3 5/3 5/2 4/1

5/4 7/5 8/5 7/4 7/3 8/3 7/2 5/1

Figure 5.1: The Stern-Brocot Tree

Note that it is also possible to maintain the Stern-Brocot tree as an ordered
list, rather than a tree, starting with the list {0/1, 1/0}. An additional element
may be inserted between any two existing elements in the list by forming their
mediant, and this process may be repeated indefinitely. Note also that two
elements sL and sR are Farey neighbors to any number α if sL < α < sR and the
mediant of sL and sR has a denominator larger than the order of the Farey series.
This gives a convenient procedure for forming best rational approximations using
only the Stern-Brocot tree, as the following example shows.

Example 5.34: Find the members of F10 which enclose π.
Solution: By repeatedly calculating mediants, terms can be added to the list
{ 0

1 , 1
0} until π is enclosed and it is not possible to generate additional enclosing

terms whose denominator does not exceed 10. This process is carried out below.
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}
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1
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1
0

}
,

{
0
1

,
1
1

,
2
1

,
3
1

,
1
0

}
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{
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Note that 25/8 and 22/7 are the left and right neighbors to π in F10, since
25/8 < π < 22/7, and since the mediant of 25/8 and 22/7 (49/15) has a
denominator which is too large for the Farey series being considered.

Note also that the construction process above could be trivially amended to treat
the case of a constrained numerator rather than a constrained denominator.

The Stern-Brocot tree has many remarkable properties (especially in view of
the simplicity of its construction). We mention the following properties without
proof.

• Each rational number in the tree is irreducible.

• Each rational number appears in the tree only once.

• Every positive rational number appears in the tree (i.e. there are no
rational numbers absent).

A more detailed discussion of the Stern-Brocot tree and proof of its proper-
ties is provided in [5], pp. 116-123.

5.9.2 The Correspondence Between The Stern-Brocot Tree
And The Apparatus Of Continued Fractions

The Stern-Brocot tree, on examination, bears a clear resemblence to the appara-
tus of continued fractions. For example, in examining Figure 5.1 and following
leftmost branches in the tree, the rational numbers 1/2, 1/3, 1/4, and 1/5
correspond respectively to the continued fractions [0;2], [0;3], [0;4], and [0;5].
Similarly, following the right branches down from 1/2 yields, in order, [0;1,2],
[0;1,3], and [0;1,4]. Clearly, a relationship between the Stern-Brocot tree and
the apparatus of continued fractions may exist.
Suspicions of a simple relationship may also arise by noting that the way

in which the Stern-Brocot tree is constructed when only left branches or only
right branches are pursued is of the same form as the rule for the formation
of continued fraction convergents (Eqns. 5.19 and 5.20). For example, the nth
successor to the right of 1/3 has the form

n+ 1
2n+ 3

, (5.93)

which is suspiciously similar to (5.19) and (5.20).
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There is, in fact, an intimate relationship between the Stern-Brocot tree and
the apparatus of continued fractions. We present this relationship as Lemma
5.35, below.

Lemma 5.35: Let Rz0Lz1 . . . Lzj−2Rzj−1Lzj or Rz0Lz1 . . . Rzj−2Lzj−1Rzj (de-
pending on whether the final leg of the path is towards the left or towards
the right, respectively) be the path in the Stern-Brocot tree from the frac-
tion 1/1 to the fraction a/b, where LN denotes traveling downward and to
the left in the tree N nodes, and RN denotes traveling downward and to the
right in the tree N nodes. Then the continued fraction representation of a/b is
[z0; z1, . . . , zj−2, zj−1, zj + 1].
Proof: The proof is inductive. First note that the constraints of the path
require that z0 ≥ 0, and that zk ≥ 1, k > 0. In other words, only the first
rightward leg of the path can have zero steps.

If the path is Rz0 , z0 = 0, then the lemma predicts that the continued fraction
representation will be [z0 + 1] = [1], which is the correct continued fraction
representation of the fraction 1/1. Note that the rational number 1/1 has no
ancestor in the tree.

If the path is Rz0 , z0 �= 0, then the lemma predicts that the continued fraction
representation will be [z0 + 1], which is correct on inspection since the most
rightward path in the Stern-Brocot tree traverses the non-negative integers.
Note that the immediate ancestor of the fraction [z0 + 1] is [z0].

If the path is Rz0 , Lz1 , z0 = 0, then the fraction a/b will be the weighted mediant
of 1/1 and 0/1,

1
z1 + 1

= [0; z1 + 1], (5.94)

which argrees with the lemma. Note that the immediate ancestor ancestor of
[0; z1 + 1] in the tree is [0; z1].

If the path is Rz0 , Lz1 , z0 �= 0, then the fraction a/b will be the weighted mediant
of (z0 + 1)/1 and z0/1, i.e.

(z0 + 1) + (z0z1)
(1) + (z1)

= z0 +
1

z1 + 1
= [z0; z1 + 1], (5.95)

which is consistent with the lemma. Note also that the immediate ancestor of
the rational number specified by (5.95) is

(z0 + 1) + z0(z1 − 1)
(1) + (z1 − 1) = z0 +

1
z1
= [z0; z1]. (5.96)
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The cases with two or fewer path components have been proved above. It
remains to prove all cases with three or more path components.

Let sk = pk/qk denote the kth-ordered convergent of the continued fraction
[z0; z1, . . . , zj−1, zj] (note that the final partial quotient is not adjusted upwards
by one). For k ≥ 2, we can establish a relationship between [z0; z1, . . . , zk−1, zk]
and [z0; z1, . . . , zk−1, zk + 1] as follows:

[z0; z1, z2, . . . , zk−2, zk−1, zk + 1] =
(zk + 1)pk−1 + pk−2

(zk + 1)qk−1 + qk−2
=

pk + pk−1

qk + qk−1
. (5.97)

If we agree for convenience, as was mentioned in Section 5.5, that we will define
s−1 = p−1/q−1 = 1/0, then (5.97) holds for k ≥ 1.
(Inductive Step): Assume that the lemma holds up through k−1. For a path
in the Stern-Brocot tree Rz0Lz1 . . . Lzk−2Rzk−1Lzk or Rz0Lz1 . . . Rzk−2Lzk−1Rzk ,
k ≥ 2, the “reversal” fraction above (i.e. the fraction where the path changes
directions) is

[z0; . . . , zk−2, zk−1 + 1] =
pk−1 + pk−2

qk−1 + qk−2
(5.98)

(this is established by the lemma on the path through k− 1 and by Eqn. 5.97).
The immediate ancestor of the fraction specified in (5.98) is

[z0; . . . , zk−2, zk−1] =
zk−1pk−2 + pk−3

zk−1qk−2 + qk−3
, (5.99)

as was shown to hold in (5.96) and in the inductive step.

The rational number corresponding to the path Rz0Lz1 . . . Lzk−2Rzk−1Lzk or
Rz0Lz1 . . . Rzk−2Lzk−1Rzk is a weighted mediant of (5.98) and (5.99):

zk(zk−1pk−2 + pk−3) + pk−1 + pk−2

zk(zk−1qk−2 + qk−3) + qk−1 + qk−2
=
(zk + 1)pk−1 + pk−2

(zk + 1)qk−1 + qk−2
(5.100)

=
pk + pk−1

qk + qk−1
(5.101)

= [z0; z1, . . . , zk−1, zk + 1], (5.102)

which establishes the main result of the lemma in the inductive step. Note also
that the immediate ancestor of the fraction specified in (5.100) is [z0; . . . , zk−1, zk]
(which is necessary for the inductive step). This proves the lemma.
Remarks: This lemma provides a straightforward method to go from a frac-
tion’s position in the Stern-Brocot tree to its continued fraction representation,
or vice-versa.
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To go from a fraction’s position in the Stern-Brocot tree to its continued fraction
representation:

• Starting with moves downward and to the right from the fraction 1/1
(z0), observe the length of the alternating rightward and leftward node
traversals required to reach the desired fraction.

• Adjust the final length upward by one.
• These lengths in order are then the successive partial quotients of the
fraction.

To go from the continued fraction representation of a fraction to its position in
the Stern-Brocot tree:

• Reduce the final partial quotient by one.
• Use the partial quotients, in order, in an alternating fashion, to go right-
ward and downward and leftward and downward in the Stern-Brocot tree.
The fraction reached on the final leg will be the fraction of interest.

It is clear from the lemma above that the Stern-Brocot tree and the appara-
tus of continued fractions are intimately related. Specifically, the Stern-Brocot
tree provides a model for the formation and arrangement of rational numbers,
but the apparatus of continued fractions provides a much more efficient way to
navigate the Stern-Brocot tree and to find best rational approximations.

5.9.3 Using The Stern-Brocot Tree To Find Best Rational
Approximations

It is clear from Example 5.34 that the Stern-Brocot tree can be used to find best
rational approximations in the Farey series of any order, simply by forming me-
diants until the number of interest is enclosed. It is also clear that an algorithm
of repeatedly forming mediants in order to find a best rational approximation
in FkMAX ,hMAX

can be devised.
However, the sole drawback of such a procedure is that building the Stern-

Brocot tree from the top in order to find neighbors in FN is an O(N) procedure,
which renders it unsuitable for use with large N . For this reason, the continued
fraction algorithms presented earlier in the chapter, which are O(log N) (due
to the guaranteed minimum exponential rate of increase of convergent denomi-
nators, Theorem 5.12), are the only practical algorithms.

5.10 Practical Techniques

Although this chapter has presented rather theoretical results and techniques
from number theory, our emphasis is on practical applications (which is why
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we’ve concentrated on finding Farey neighbors of rational numbers). Practicing
engineers would be more likely to use the digits from a calculator as the start-
ing point to obtain a rational approximation than to use a symbolic irrational
constant, such as π.
In this section, we present practical techniques—those most likely to be used

in practice by microcontroller software developers.

5.10.1 Practical Aspects Of Beginning With A Rational
Approximation

In practical applications, one often begins with a rational approximation to a ir-
rational number. For example, one might use 3.14159265359 (from a calculator)
as the value of π for the application of Algorithm 5.1. This naturally raises the
question of how accurate the rational approximation used as a starting point
must be to avoid identifying the wrong rational numbers as Farey neighbors.
We illustrate the possibility of identifying the wrong rational number with an
example.

Example 5.36: Find the members of F255 which enclose π, using 3.1416 as
the value of π.
[Erroneous] Solution And Remarks: It can be shown using the methods
presented earlier that the members of F255 which enclose 3.1416 are 355/113
and 732/333, i.e.

355
113

< 3.1416 <
732
333

. (5.103)

However, in fact, 688/219 and 355/113 are the actual enclosing neighbors of π
in F255:

688
219

< π <
355
113

< 3.1416 <
732
333

. (5.104)

Thus by using an imprecise approximation of π, we have incorrectly identified
the neighbors to π in F255.

How do we avoid incorrectly identifying the rational numbers which enclose
an irrational number when a rational approximation of the irrational number is
used as the starting point for the selection algorithm? There are three practical
approaches to the problem.
Observe that when we know the first several decimal digits of an irrational

number, the actual value of the irrational number is confined to an interval.
For example, if a calculator displays “3.1416” as the value of π, we might safely
assume that 3.14155 ≤ π ≤ 3.14165, if the digits that the calculator displays
were obtained by rounding.
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As a first approach to dealing with a rational approximation to an irrational
number, we might simply determine the Farey neighbors of both endpoints of the
interval of uncertainty. For example, if 314,155/100,000 and 314,165/100,000
have the same Farey neighbors in a Farey series of interest (which we can eas-
ily determine using the algorithms presented earlier in this chapter), we could
correctly deduce that these Farey neighbors are the Farey neighbors of π. On
the other hand, if 314,155/100,000 and 314,165/100,000 have different enclosing
Farey neighbors, then there are Farey terms in the interval [3.14155, 3.14165],
and more information about π would be required to determine its true Farey
neighbors.
A second approach to this same problem would be to devise an algorithm

to process the endpoints of the interval of uncertainty simultaneously and note
when their partial quotients diverge.
A third approach, which is perhaps the most direct, is to apply Algorithm

4.14 to determine the rational number with the minimum denominator in the
interval of uncertainty. We would thus know that we have enough information
to determine uniquely the enclosing rational numbers in any Farey series up to
one less than this minimum denominator.

Example 5.37: Assume that 3.142 is the only value for π available. What is
the maximum order of the Farey series where the enclosing rational numbers to
π can be unambiguously determined?
Solution: Assume that the constant “3.142” was obtained by rounding of
digits, rather than by truncation of digits: thus 3.1415 ≤ π ≤ 3.1425. Ap-
plying Algorithm 4.14 yields 333/106 as the rational number with the smallest
denominator in the interval [3.1415, 3.1425]. Thus, no rational number with a
smaller denominator exists in the interval, and the enclosing rational numbers
of π in the Farey series of up to order 105 can be determined with the limited
information available.

5.10.2 Obtaining Irrational Numbers To High Precision

It may happen in practice that one desires more information about an irra-
tional number than can be easily obtained. As a practical example, a typical
scientific calculator treats π as 3.14159265359, implying that 3.141592653585≤
π ≤ 3.141592653595. Application of Algorithm 4.14 to this interval yields
1,146,408/364,913 as the rational number with the smallest denominator in this
interval: implying that we cannot determine the enclosing rational approxima-
tions to π even in F232−1 using the information most readily available. How do
we obtain more digits of π? And even if we can obtain more digits of π, how
do we manipulate rational numbers with such large integer components? (We
discuss the problem of obtaining more digits below, but discuss manipulation
in Section 5.10.3.)
There are two approaches to determining π or other numbers to high preci-

sion.
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1. Locate information about the number on the Web or in a reference book.
(Note that decimal digits of the number, partial quotients of the number,
or convergents of the number can all be used; and it is typical for all of
these to be somewhere on the Web. However, convergents are the most
useful form for obtaining best rational approximations.)

2. Use commercial symbolic manipulation software (Mathematica [75], for
example) to obtain the number of interest to arbitrary precison.30

5.10.3 Manipulating High-Precision Rational Numbers

Assuming that one is able to determine a [rational or irrational] number of
interest to high-precision (either a large number of decimal digits or a ratio-
nal number with large integer components), how does one manipulate rational
numbers with large integer components? In this section, we list software alter-
natives.
The first alternative we should mention is The Iju Tool Set, distributed with

this book. Starting with version 1.05, this tool set contains a subset of the
GNU MP Library [73], and will manipulate large integers and rational numbers
with large integer components. To provide more flexibility for the user, this
tool set is embedded as extensions to the Tcl scripting language; so that any of
the functionality provided can be used either interactively or from within a Tcl
script.
Figure 5.2 shows a screen snapshot31 of IjuConsole (the Wish-like Tcl inter-

preter from The Iju Tool Set) being used interactively to provide the answers
to several questions involving large integers and rational numbers with large
integer components. The first command shown,

arbint intmul 218643832695416243621 13254215384521848,

illustrates integer multiplication. The second command shown,

arbint intfac 55,

illustrates calculating the factorial of 55. The third command shown,

arbint cfbrapab [arbint const pi 500] 65535 65535,

illustrates calculating the best rational approximation to π with numerator and
denominator not exceeding 65,535, and using the first 500 digits of π as the
value of π. The fourth command shown,

30Mathematica [75] is quite expensive (version 4.1 for Windows, as of March 2001, is $1,495),
and something that a microcontroller software developer would very rarely use, so we assume
that most microcontroller software developers would search for a less expensive solution.

31By the way, IjuConsole will handle much larger integers, but small examples were used
so that all of the information would fit in a single screen snapshot.
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Figure 5.2: Large Integer Arithmetic And Best Rational Approximations Using
IjuConsole From The Iju Tool Set

arbint cfbrapab 1.609344 1023 1023,

illustrates finding the best rational approximation to the conversion factor from
MPH to KPH with numerator and denominator not exceeding 1,023. The last
command shown,

arbint rnadd 78/2976 342/2763,

illustrates the addition of two rational numbers.
Many other potential solutions for dealing with large integers have been

submitted by newsgroup posters, and are listed below. (Please note that these
alternatives haven’t actually been tried, and we can’t say whether they are
viable.)

1. Mathematica [75] (by Wolfram Research) will easily operate on large in-
tegers and rational numbers with large integer components (see Footnote
30). (Suggested by Paul Lutus [47] and Don Taylor [55].)

2. The GNU Multiple Precision Arithmetic Library (GMP) [73]. This library,
which is free and on the Web, can be linked into ‘C’ and ‘C++’ programs,
and allows fast integer calculations of any size that do not exceed the
memory available in the computer. This library could be used to quickly
construct a program to process rational numbers with very large integer
components.
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3. UBASIC [77] (by Yuji Kida [27]) is an extended-precision version of the
BASIC language which will handle integers up to 2,600 digits and exact
rational arithmetic. (Suggested by Richard Schorn [52].)

4. Derive 5 [72] (by Texas Instruments). The exact capabilities of this soft-
ware are not known, but the Web page indicates it can perform exact
rational arithmetic. (Suggested by Richard Schorn [52] and Don Taylor
[55].)

5. Maple [74] (by Waterloo Maple, Inc.). The exact capabilities of this soft-
ware are not known. (Suggested by Paul Lutus [47] and Don Taylor [55].)

6. MuPAD [76] (from the University Of Paderborn, Germany). The capa-
bilities of this software are not known. (Suggested by Richard Schorn
[52].)

In addition to the large integer resources above, a much longer list of re-
sources is maintained at the URL

http://www.csc.fi/math topics/Mail/FAQ/msg00015.html,

and is reproduced below. Because this URL was apparently last updated in
1994, it is not known which of the resources listed are still available.

--------------------------------------------------------------------------------
Subject: List of Arbitrary Precision C packages
From: mrr@scss3.cl.msu.edu (Mark Riordan)
Date: 27 Jan 1994 16:06:01 GMT
Newsgroups: sci.math
--------------------------------------------------------------------------------
This is the file BIGNUMS.TXT from ripem.msu.edu, last updated January 1994.

In response to Email requests, I have assembled this list of
large-integer arithmetic packages of which I have heard.
Most of these are C function libraries, available in source form.
A few also deal with floating point numbers.

For your convenience, I have placed copies of
some of these on ripem.msu.edu (35.8.1.178). They are
available for anonymous FTP in the directory "pub/bignum".
However, what I have may not be the most current version in all cases.

Here they are, in no particular order:

mp
Multiple Precision package that comes with some Unixes

Multiple precision package accessed via -lmp flag on your
compiler. Provides +, -, *, /, gcd, exponentiation,
sqrt. Comes with SunOS, NeXT Mach, BBN Mach 1000,
and probably a few others. See "man 3 mp".
Object code only, of course.

PARI
Henri Cohen, et al., Universite Bordeaux I, Paris, FRANCE

Multiple precision desk calculator and library routines.
Contains optimized assembly code for Motorola 68020,
semi-optimized code for SPARC, and apparently rather slow
generic C version. Does both integers and reals.
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Does vectors and matrices as well as scalars.
Contains a number of advanced functions, some of which I’ve
never heard of. ("Weber’s function"?)
Has a factorization function, primality test, & other related stuff.
Plenty of TEX documentation.
Public domain, but you can’t distribute modified versions.
Available via anonymous FTP from ftp.inria.fr:lang/ and
math.ucla.edu. The ucla site has Mac, MSDOS, OS/2, and
NeXT-specific versions there in addition to:
Filename: pari-1.37.tar.Z (There are now more recent versions)

Arithmetic in Global Fields (Arith)
Kevin R. Coombes, David R. Grant

Package of routines for arbitrary precision integers or
polynomials over finite fields. Includes basic +, -, *, /
and a few others like gcd. Source code in C.
Distributed under the terms of the GNU public license.
Includes man pages and TEX documentation.
Filename: arith.tar.Z

Arbitrary Precision Math Library
Lloyd Zusman Los Gatos, CA

C package which supports basic +, -, *, /. Provides for radix
points (i.e., non-integers). Not as polished as the others here.
Posted to comp.sources.misc in October 1988.
Filename: apml.tar.Z

BigNum
J. Vuillemin, INRIA, FRANCE, and others.
Distributed by Digital Equipment Paris Research Lab (DECPRL)

A "portable and efficient arbitrary-precision integer" package.
C code, with generic C "kernel", plus assembly "kernels" for
MC680x0, Intel i960, MIPS, NS32032, Pyramid, and of course VAX.
This is probably one of the better-known packages of this type.
Implements +, -, *, /, mod, plus logical operations OR, AND, XOR.
Both signed and unsigned arithmetic available.
Available via email from librarian@decprl.dec.com.
You will receive 5 shell archives. Give your postal address
and you will also receive printed documentation from France.
Package includes TEX documentation.
Publicly available for non-commercial use.
I removed this from my archive when I heard a rumor that PRL
doesn’t like others to distribute it. However, BIGNUM *is*
distributed as part of ecpp (see below).

Lenstra’s LIP package
Arjen Lenstra Bellcore

Portable unsigned integer package written entirely in C.
Includes +, -, *, /, exponentiation, mod, primality testing,
sqrt, random number generator, and a few others.
An earlier version of this package is the only of these packages
I have actually used. It works well and is very portable.
I haven’t done any benchmarks against the others, but the code
looks clever & Lenstra is an accomplished number theorist.

LIP replaces lenstra-3.1.c. The package now includes encrypted
source code; to obtain the decryption key, you must send a
signed license agreement to Bellcore. See the documentation.
Filename: lenstra-LIP-package.tar This is a collection of
all the files in flash.bellcore.com:/pub/lenstra

bmp (Brent’s Multiple Precision?)
R. P. Brent
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1981 vintage FORTRAN code to do extended precision floating &
fixed point arithmetic. Includes most of the mathematical
functions you’d find in a FORTRAN run-time library.
This code is an ACM algorithm, number 524.
To obtain, send a mail message to netlib@ornl.gov
containing the line "send mp.f from bmp" or better yet, perhaps
just start with "help".

SPX
Kannan Alagappan & Joseph Tardo, DEC

This is a huge prototype public key authentication system
based on RSA. I mention it here because those who have heard
of SPX have probably correctly guessed that it contains a large
integer package and I want to inform you that the large integer
package it contains is indeed DEC’s BigNum from France.
You can get a beta test copy of SPX from crl.dec.com (192.58.206.2).
Use it only for testing, as it "may" expire on a certain date.
(I don’t know whether this has expired yet.)

amp (Antti’s Multiple Precision?)
Antti Louko alo@kampi.hut.fi

Multiple precision integer package in C. Includes +, -, *, /, %,
pow, mod, 1/x mod y, random, sqrt, gcd. Available for non-commercial
use. The package includes "share-secret", a public key system based
on the Diffie-Hellman algorithm.
This is normally part of the well-known "des-dist.tar.Z",
but I have removed the DES part to avoid having to deal with
cryptographic export laws, and have named the result:
Filename: amp.tar.Z

gennum
Per Bothner U of Wisconsin-Madison

C++ routines and classes to do generic arithmetic, both
integer and rational. Part of the "Q" programming system.
Distributed under the terms of the GNU public license.
Obtained from cygnus.com.
Filename: gennum.tar.Z

MIRACL
(Shamus Software, Dublin, Ireland)

Integer and fractional multiple precision package.
MIRACL is a portable C library. Full C/C++ source code included
(In-line assembly support for 80x86). Number theoretic primitives
needed to support PK Cryptography are supplied.
C++ classes for Multiprecision Integers, Modular arithmetic, and
Chinese Remainder Thereom. Implementation in C/C++ of all modern
methods of Integer Factorisation, viz Brent-pollard, p-1, p+1,
Elliptic Curve, MPQS. Includes TEX manual and some DOS .EXEs.
Not public domain, but free for academic and non-commercial use.
Obtained from ftp.compapp.dcu.ie.
Filename: /pub/crypt/other/miracl-3.23.zip and miracl.tar.Z (older)

precision
Dave Barrett barrettd@tigger.colorado.edu

Multiple precision integer package in C with +,-,*,/, sqrt, rand,
mod, pow, log. Simple vector support. Does dynamic allocation of memory.
Free as long as you don’t sell it or any program that uses it.
Filename: precision.tar.Z

UBASIC
Prof. Yuji Kida, Rikkyo University, Nishi-Ikebukuro 3, Tokyo 171, Japan
kida@rkmath.rikkyo.ac.jp
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Multiple-precision version of the BASIC programming language,
for MS-DOS. Includes floating point. Said (by Keith Briggs)
to be pretty fast. Object only, I think. ervin@morekypr.bitnet
says: "This is the best package that I know of for
fast arithmetic. Has a version optimized for 386 machines. Includes
routines to do MPQS, the fastest currently known general factoring
algorithm. An additional file is at both sites to allow MPQS to use
hard drives so that it can factor up to 80 digits. Many number
theoretical functions are included in UBASIC. It allows over 2500
digits of precision."
Available via anonymous FTP from shape.mps.ohio-state.edu,
or simtel20.army.mil, or wuarchive.wustl.edu.

calc_v22
Unknown

MS-DOS C-like language that allows "infinite" precision.
Nice intrinsic functions. ervin@morekypr.bitnet reports problems
when changing precision on the fly.
See simtel20 or wuarchive.

briggs_arith
Keith Briggs (kbriggs@maths.adelaide.edu.au)

Turbo Pascal 5 source for routines that do multiple-precision
+, -, *, /, sqrt, gcd, factoring, rand for integers; also includes
+, -, *, / and rand for rational numbers.
Filename: briggs_arith.pas

Institute fur Experimentelle Mathematik
Dr Gerhard Schneider (?)

Fast C multiple-precision subroutine library.
I don’t know anything about it; sl25@ely.cl.cam.ac.uk says
to contact MAT420@DE0HRZ1A.BITNET for more info.
Postal Address:
Institute fur Experimentelle Mathematik
EllernStr 29
D4300 Essen-12 GERMANY

LongInt
Markus Mueller (mueller@komsys.tik.ethz.ch)

"Multi precision arithmetic written in MODULA-2, with the most time critical
parts written in Assembler. Includes basic arithmetics (+, -, *, /, %) as
well as arithmetics MODULO a number. An additional module provides a
collection of procedures for primality testing, gcd, multiplicative
inverse and more. The package is part of a Privacy Enhanced Mail (PEM)
package which includes a PEM mailer, RSA key generator and Certificate
generation tools."

Source is in Modula-2, C, and assembler for Sun 3. LongInt has
also been ported to MS-DOS under Logitech Modula-2 and Turbo
Assembler. Availability: free for university use (research and
education); otherwise, a source license is required. To obtain,
write or email to:

Markus Mueller
Bertastrasse 7
CH-8953 Dietikon
Switzerland
email: mueller@komsys.tik.ethz.ch

bignum-1.2
Henrik.Johansson@Nexus.Comm.SE

Bignum package written in portable C. Will in the future
conform to the Common Lisp functions that handles integers.
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Currently includes +, -, *, /, exponentiation, "exptmod",
comparison, random numbers, and gcd.
Filename: bignum-1.2

ACM algorithm 567
D.W. LOZIER and J.M. SMITH

FORTRAN subroutines to do extended-precision floating point
and normalized Legendre polynomials.
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 7,1 (MARCH, 1981)
Obtained from research.att.com:netlib/toms/567.Z
Filename: acm-algorithm-567-floating-point.fortran.Z

range
O. Aberth and M. J. Schaefer

C++ package to do extended-precision floating point arithmetic
with programmer-defined precision. Uses decimal representations
internally. Contains basic +, -, *, /, relational operators,
++, and a few functions like sin, cos, sqrt, log. Documentation
a trifle confusing.
Obtained from math.tamu.edu:pub/range/range.tar.Z
Filename: range.tar.Z

bsint
Author unknown.

Pre-alpha release of C++ big integer package.
Implements basic math operators, exponentiation, and modular
exponentiation. Very skimpy documentation.
See milton.u.washington.edu:/pub/user-supported/tzs/bsint.tar.Z

GNU Multiple Precision (GMP)
GNU (Free Software Foundation) multiple precision package.
I haven’t looked at it yet. This is current as of April 1992,
but there may be a more recent version by the time you read
this. This package is very widely available on FTP sites.
Filename: gmp-1.3.2.tar.Z

libg++ - GNU’s C++ class library
Free Software Foundation

Includes Integer and Rational classes. Integer provides
the usual C++ operators, plus exponentiation, gcd, lcm.
Limited functionality, but documentation is better than most.
Look for libg++-2.4.tar.gz on an FTP server near you.

Elliptic Curve Primality Proving
Francois Morain, France.

Large package to prove the primality of any prime.
Includes Inria’s BIGNUM package.
Obtained from ftp.inria.fr (128.93.1.26).
Filename: ecpp.V3.4.1.tar.Z

PGP (Pretty Good Privacy)
Philip Zimmermann prz@sage.cgd.ucar.EDU

Crypto package that includes bignum routines in C.
Assembly implementations available for several processors;
said to be quite fast for numbers around 1000 bits in size.
The crypto package violates RSA patents, but the bignum routines
can be used without fear of legal repercussions.

Bell’s Arbitrary Precision Calculator
David I. Bell, Australia (dbell@pdact.pd.necisa.oz.au)

Arbitrary-precision calculator with good online help, C-like



5.10. PRACTICAL TECHNIQUES 97

language, many builtin functions, support for integers,
rational numbers (they work like floating point), complex numbers,
matrices, strings, lists, files, "objects". Includes
gcd, primality testing, even trig functions. Recommended.
(Large package, though.) Obtained from comp.sources.unix.
Filename: calc-1.24.7.tar.Z

Calc for GNU Emacs
Dave Gillespie (daveg@synaptics.com)

Advanced calculator written in Emacs Lisp. Includes arbitrary
precision integers and floating point, bitwise operations,
log and trig functions, financial functions, number theoretic
functions including prime factorization, symbolic calculus,
and an interface to GNUPLOT.
Filename: calc-2.02a.tar.Z

MPFUN: A Multiple Precision Floating Point Computation Package
David H. Bailey (dbailey@nas.nasa.gov)

Package of Fortran subroutines to perform multiprecision
floating point arithmetic. Also includes a program that
can automatically convert ordinary Fortran-77 code into code
that calls the MPFUN routines.
Keith Briggs says: "It’s a masterpiece, and the state of the art
as far as Fortran goes."
Documentation in TeX format. Unrestricted distribution
allowed at no cost.
Filenames: mpfun_fortran.tar.Z & mpfun_tex_papers.tar.Z

MPQS
Mark S. Manasse (msm@src.dec.com) and Arjen Lenstra

C program to factor numbers on a distributed network of
heterogeneous machines. June 1993 version.
Filename: mpqs-distributed-factoring.shar

GNU bc
Author: Philip A. Nelson (phil@cs.wwu.edu)
GNU bc is an interactive algebraic language with arbitrary precision.
GNU bc is almost the same as bc & dc in some Unixes.
Filename: bc-1.02.tar.z (for example, in GNU prep.ai.mit.edu:pub/gnu/)

bc & dc
bc is an interactive processor for an arbitrary precision arithmetic
language or just compiler/preprocessor for dc calculator with arbitrary
precision; they comes with some Unixes.

Built-in support in other languages
Various

Multiple precision arithmetic is available in a number of
programming languages, such as Lisp and ABC (cf. mcsun.eu.net).
Version 8 of the programming language Icon (Griswold’s successor
to SNOBOL4 available from cs.arizona.edu) has large integers.
Perl (by Larry Wall, available from devvax.jpl.nasa.gov)
includes source, in Perl, for such a package, but it’s probably
not suitable for serious use.
For some of these, source code may be available. This list is
long enough, so I’m not going to pursue it aggressively.

Thanks to Keith Briggs and several others who contributed to this list.

See also other sites, such as nic.funet.fi:pub/sci/math/multiplePrecision/.

Mark Riordan mrr@ripem.msu.edu
--------------------------------------------------------------------------------
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5.12 Exercises

5.12.1 Algorithms

[5.1] Develop an algorithm to convert a continued fraction [a0; a1, . . . , an] to
a rational number a/b “from the right” (starting with an), and prove that the
a/b generated will be irreducible. (Hint: the ordinary algorithm often applied
by hand—working “from the bottom up” as shown in Example 5.4 will always
generate a coprime a/b.)

5.12.2 Calculation Of Best Rational Approximations

[5.2] Assuming 1.60934432 as the exact conversion factor from miles to kilo-
meters, find the best rational approximation to this conversion factor with a
maximum numerator of 255 and a maximum denominator of 255.
[5.3] Assuming 1.609344 (see Footnote 32) as the exact conversion factor from
miles to kilometers, find the best rational approximation to this conversion
factor with a maximum numerator of 65,535 and a maximum denominator of
65,535.

5.12.3 Continued Fraction Representation Of Irrational
Numbers

[5.4] Show that the continued fraction representation of the golden ratio (
√
5/2+

1/2) is [1; 1].
32This conversion factor was obtained from [78] and is assumed to be the most accurate

conversion factor available.
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