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Computer processors are equipped with instructions to multiply and divide very large integers.
These instructions can be used to economically implement linear scalings from an integer domain
to an integer range by choosing a rational number rA = h/k, calculating the product hx using
an integer multiplication instruction, and applying an integer division instruction to form �hx/k�.
This paper presents a novel O(log max(hMAX , kMAX)) algorithm based on continued fractions for
finding the closest rational number rA = h/k to an arbitrary real number rI subject to constraints
h ≤ hMAX and k ≤ kMAX . Novel results are presented bounding the maximum distance between
available choices of rA when rA will be chosen only in an interval [l, r], utilizing a second novel
O(log max(hMAX , kMAX)) continued fraction algorithm. Novel results bounding the error due to
the necessity of an integer domain and range are presented. The results and techniques presented
have relevance to scientific computing (where integer operations may execute much more quickly
than floating point operations), to consumer electronics and embedded real-time systems (where
the processor may have integer multiplication and division instructions, but no floating-point
capability), to the design of special-purpose digital logic (which may implement multiplication
and division in hardware), and to the design of mechanical systems (two gears meshed together
mechanically implement a ratio which is the ratio of their numbers of teeth).

Categories and Subject Descriptors: G.1.2 [Numerical Analysis]: Approximation—linear ap-
proximation

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Rational approximation, Farey series, continued fraction,
approximation error, integer lattice.

1. INTRODUCTION

Modern computer instruction sets contain instructions for multiplication and di-
vision of large integers. In many applications, the mainstay of efficient software
design is the ability to phrase a computational problem in a form which is eco-
nomically executed by the hardware available. In a very capable processor (such
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as a workstation or supercomputer), approximations involving only integers may
be attractive because integer instructions execute more quickly than floating-point
instructions, or because the processor design allows them to execute concurrently
with floating-point instructions. In very inexpensive processors (such as those used
in consumer electronics), approximations involving only integers may be attractive
because the processor has no floating-point capability.
This paper presents results and techniques for making optimal use of integer mul-

tiplication and division instructions to approximate functions of the form F (x) =
rIx, rI ∈ R

+ using functions in the form of (1).1

J(x) = �rA�x�� =
⌊
h�x�
k

⌋
;h ∈ Z

+,≤ hMAX ; k ∈ N,≤ kMAX . (1)

Because modern processors can multiply and divide very large integers (32- and
64-bit integers are typical), choosing h and k so as to place rA = h/k as close as
possible to an arbitrary rI ∈ R

+ involves a very large search space, and an efficient
algorithm is necessary for computational viability.
Section 2 presents a summary of important properties of the Farey series, and

Section 3 presents a summary of important properties of the apparatus of continued
fractions.2

Section 4 presents a novel O(log kMAX) continued fraction algorithm for finding
the best rational approximations rA = h/k to an arbitrary rI ∈ R

+ subject to
the constraint k ≤ kMAX . Section 5 extends the algorithm of Section 4 to the
case where both h and k are constrained, h ≤ hMAX ∧ k ≤ kMAX ; and presents a
novel O(log max(hMAX , kMAX)) continued fraction algorithm for finding the best
rational approximations in the rectangular area of the integer lattice formed by the
constraints.
Section 6 presents novel results bounding the distance between rational numbers

in a rectangular area of the integer lattice when rI ∈ [l, r]. Section 7 presents a
method for bounding the end-to-end approximation error as a function of rA − rI .
Section 8 provides a practical design example illustrating the techniques.

2. THE FAREY SERIES OF ORDER N

The Farey series of order N , denoted FN , is the ordered set of all irreducible
rational numbers h/k in the interval [0,1] with a denominator k ≤ N . For example,
the Farey series of order 7, F7, is
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. (2)

The distribution of Farey rational numbers in [0,1] is repeated in any [n, n+ 1],
n ∈ Z

+; so the distribution of Farey rationals in [0,1] supplies complete information

1Mnemonic for rI and rA: I=ideal, A=actual. In this paper, R
+, Z

+, and N are the sets of
non-negative real numbers, non-negative integers, and positive integers, respectively.
2The algorithms presented are based on the properties of the Farey series and the apparatus of
continued fractions—because these are topics from number theory that seldom find application in
practical computer arithmetic, a summary is necessary for readability.
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about the distribution in all of R
+.3

2.1 Properties Of Sequential Elements

Theorem 1. If H/K and h/k are two successive terms of FN , then

Kh−Hk = 1. (3)

Note: This condition is necessary but not sufficient for h/k to be the Farey
successor of H/K. In general, there is more than one h/k with k ≤ N such that
Kh−Hk = 1.

Proof. See [1] p.23, [6] p.222.

Theorem 2. If H/K is a term of FN , the successor of H/K in FN is the h/k
satisfying Kh−Hk = 1 with the largest denominator k ≤ N .

Proof. Any potential successor of H/K which meets Kh − Hk = 1 can be
formed by adding 1/Kk to H/K (4).

Kh−Hk = 1 → h

k
=

1 +Hk

Kk
=

H

K
+

1
Kk

(4)

If h/k and h′/k′ both satisfy Kh − Hk = 1 with k′ < k ≤ N , then H/K <
h/k < h′/k′. Thus the h/k with the largest k ≤ N that meets Kh−Hk = 1 is the
successor in FN to H/K.

Theorem 3. If H/K and h/k are two successive terms of FN , then

K + k > N. (5)

Note: This condition is necessary but not sufficient for h/k to be the Farey
successor of H/K.

Proof. See [1] p.23.

Theorem 4. If hj−2/kj−2, hj−1/kj−1, and hj/kj are three consecutive terms of
FN , then:

hj =
⌊
kj−2 +N

kj−1

⌋
hj−1 − hj−2 (6)

kj =
⌊
kj−2 +N

kj−1

⌋
kj−1 − kj−2 (7)

3We stretch the proper nomenclature by referring to sequential rational numbers outside the
interval [0, 1] as Farey terms or as part of FN , which, in the strictest sense, they are not. All of
the results presented in this paper (except Sections 2.2 and 2.3) apply everywhere in R

+, and this
abuse is not harmful.
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Notes: (1)Theorem 4 gives recursive formulas for generating successive terms in
FN if two consecutive terms are known. (2)Equations (6) and (7) can be solved to
allow generation of terms in the decreasing direction (8, 9).

hj =
⌊
kj+2 +N

kj+1

⌋
hj+1 − hj+2 (8)

kj =
⌊
kj+2 +N

kj+1

⌋
kj+1 − kj+2 (9)

Proof. See [9] p.83.

In general, given only a single irreducible rational number h/k, there is no method
to find the immediate predecessor or successor in FN without some iteration (Equa-
tions 6, 7, 8, and 9 require two successive elements).

2.2 Number Of Elements

The number of elements in FN is approximately 3N2/π2.4 F255=28−1 contains
about 20,000 elements, F65,535=216−1 contains about 1.3 billion elements, F232−1

contains about 5.6× 1018 elements, and F264−1 contains about 1.0× 1038 elements.
The large numbers of elements in the Farey series of the orders used in practice

make it impractical to linearly search the Farey series to find the best rational
approximations.5

2.3 Probabilistic Results On |rI − rA|
If rational numbers of the form rA = h/k, subject to the constraint k ≤ kMAX ,
are used to approximate arbitrary real numbers rI , it might not be clear how close
we can “typically” choose rA to an aribtrary rI under the constraint. We consider
different asymptotics for the precision of the approximation of an arbitrary rI by
a rational number rA = h/k with k ≤ kMAX . For simplicity of notation we denote
α = rI and N = kMAX and assume, without loss of generality, that α ∈ [0, 1].
We are thus interested in the asymptotic behaviour, when N → ∞, of the quan-

tity

ρN (α) = min
h/k∈FN

|α− h/k| ,

which is the distance between α and FN , the Farey series of order N .
The worst–case scenario is not very interesting: from the construction of the

Farey series we observe that for a fixed N the longest intervals between the neigh-
bours of FN are [0, 1/N ] and [1− 1/N, 1] and therefore for all N

max
α∈[0,1]

ρN (α) =
1
2N

. (10)

4This is a classic result from number theory, and its basis isn’t discussed here. In this instance
we mean FN strictly in the interval [0, 1].
5For example, a particularly naive approach might be to start at an integer i, where three suc-
cessive terms in FN are (Ni − 1)/N , i/1, and (Ni+ 1)/N , and to use (6) through (9) to linearly
search upward or downward until the real number of interest is enclosed. Even in F232−1, searching
1,000,000 rational numbers per second, such a search would require up to about 90,000 years.
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(This supremum is achieved at the points 1/(2N) and 1− 1/(2N).)
However, such behaviour of ρN (α) is not typical: as is shown below, typical

values of the approximation error ρN (α) are much smaller.
First consider the behaviour of ρN (α) for almost all α ∈ [0, 1].6 We then have

(see [3], [2]) that for almost all α ∈ [0, 1] and any ε > 0, (11) and (12) hold.

lim
N→∞

ρN (α)N2 log1+ε N = +∞, lim inf
N→∞

ρN (α)N2 logN = 0 (11)

lim sup
N→∞

ρN (α)N2

logN
= +∞, lim

N→∞
ρN (α)N2

log1+ε N
= 0 (12)

Even more is true: in (11) and (12) one can replace logN by logN log logN ,
logN log logN log log logN , and so on. Analogously, log1+ε N could be replaced by
logN(log logN)1+ε, logN log logN(log log logN)1+ε, and so on.
These statements are analogues of Khinchin’s metric theorem, the classic result

in metric number theory, see e.g. [2].
The asymptotic distribution of the suitably normalised ρN (α) was derived in [4].

A main result of this paper is that the sequence of functions N2ρN(α) converges in
distribution, when N → ∞, to the probability measure on [0,∞) with the density
given by (13).

p(τ) =




6/π2, if 0 ≤ τ ≤ 1
2

6
π2τ (1 + log τ − τ) , if 1

2 ≤ τ ≤ 2

3
π2τ

(
2 log(2τ)−4 log(

√
τ+

√
τ−2)−(

√
τ−√

τ−2)2
)
,

if 2 ≤ τ < ∞

(13)

This means that for all a,A such that 0 < a < A < ∞, (14) applies, where ‘meas’
denotes for the standard Lebesgue measure on [0, 1].

meas{α ∈ [0, 1] : a < N2ρN (α) ≤ A} →
∫ A

a

p(τ)dτ as N → ∞ (14)

Another result in [4] concerns the asymptotic behavior of the moments of the
approximation error ρN (α). It says that for any δ �= 0 and N → ∞, (15) ap-
plies, where ζ(·) and B(·, ·) are the Riemann zeta–function and the Beta–function,
respectively.

6A statement is true for almost all α ∈ [0, 1] if the measure of the set where this statement is
wrong has measure zero.
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δ + 1
2

∫ 1

0

ρδ
N(α)dα =




∞, if δ ≤ −1
3

δ2π2

(
2−δ + δ2δ+2B(−δ, 1

2 )
)
N−2δ (1+o(1)) ,

if −1<δ<1, δ �=0

3
π2 N

−2 logN +O
(
N−2

)
, if δ = 1

2−δ ζ(δ)
ζ(δ+1)N

−δ−1 +O
(
N−2δ

)
, if δ > 1

(15)

In particular, the average of the approximation error ρN (α) asymptotically equals
∫ 1

0

ρN (α)dα =
3
π2

logN

N2
+O

(
1

N2

)
, N → ∞ . (16)

Comparison of (16) with (12) shows that the asymptotic behavior of the average
approximation error

∫
ρN(α)dα resembles the behavior of the superior limit of

ρN (α). Even this limit decreases much faster than the maximum error maxα ρN (α),
see (10): for typical α the rate of decrease of ρN (α), when N → ∞, is, roughly
speaking, 1/N2 rather than 1/N , the error for the worst combination of α and N .
These results show that there is a significant advantage to using the Farey series

as the set from which to choose rational approximations, rather than more naively
using only rational numbers with the maximum denominator kMAX (as is often
done in practice).

3. THE APPARATUS OF CONTINUED FRACTIONS

An n-th order finite simple continued fraction is a fraction in the form of (17),
where a0 ∈ Z

+ and ak ∈ N for k > 0. To ensure that two continued fractions which
represent the same number can’t be written differently, we also require that the
final element an not be equal to 1 (except when representing the integer 1).7 A
continued fraction in the form of (17) is denoted [a0; a1, a2, . . . , an], and each ak is
called an element or partial quotient.

a0 +
1

a1 +
1

a2 +
1

. . .+
1
an

= [a0; a1, a2, . . . , an] (17)

Continued fractions provide an alternate apparatus for representing real numbers.
The form of (17) has important properties which are presented without proof.

• Every rational number can be represented by a finite simple continued fraction
[a0; a1, a2, . . . , an].

7If an = 1, the continued fraction can be reduced in order by one and an−1 can be increased by
one while still preserving the value of the continued fraction.
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• Each unique [a0; a1, a2, . . . , an] corresponds to a uniquely valued rational num-
ber.

Without proof, we present the following algorithm for finding partial quotients
ak of an arbitrary non-negative rational number a/b.

Algorithm 1.

• k := −1.
• divisor−1 := a.
• remainder−1 := b.
• Repeat

• k := k + 1.
• dividendk := divisork−1.
• divisork := remainderk−1.
• ak := dividendk div divisork.
• remainderk := dividendk mod divisork.

• Until (remainderk = 0).

Without proof, we present the following properties of Algorithm 1.

• The algorithm will produce the same [a0; a1, a2, . . . , an] for any (ia)/(ib), i ∈ N,
i.e. the rational number a/b need not be reduced before applying the algorithm.

• The algorithm will always terminate (i.e. the continued fraction representation
[a0; a1, a2, . . . , an] will be finite).

The apparatus of continued fractions is best viewed as an alternate apparatus
for representing real numbers, and Algorithm 1 is best viewed as an algorithm for
determining in which partition a rational number lies, in the same sense that long
division successively partitions a rational number as each successive decimal digit is
obtained. To say that the first three digits of a real number x are “3.14” is logically
equivalent to saying that 3.14 ≤ x < 3.15 (i.e. that x lies in a certain partition).
In the same sense, (18), (19), and (20) are valid equivalences.

(x = [a0] ∨ x = [a0; . . . ]) ↔ (a0 ≤ x < a0 + 1) (18)

(x = [a0; a1] ∨ x = [a0; a1, . . . ]) ↔
(
a0 +

1
a1 + 1

< x ≤ a0 +
1
a1

)
(19)

(x = [a0; a1, a2] ∨ x = [a0; a1, a2, . . . ])

�
a0 +

1

a1 +
1
a2

≤ x < a0 +
1

a1 +
1

a2 + 1




(20)

The form of (18), (19), and (20) could be continued indefinitely to show the
defining inequality for higher-order partitions. From the form of (18), (19), and
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(20) it can be readily seen that irrational numbers have a non-terminating continued
fraction representation, and that the algorithm for finding that representation would
be symbolic and involve successively determining higher order partial quotients
(i.e. at each step, in which partition the irrational number lies). The algorithm
for determining the partial quotients of an irrational number isn’t discussed in this
paper. In most practical applications, rI is known empirically to at least several
decimal places, and the most practical technique is to use the best known decimal
approximation as the starting point to apply Algorithm 1.
The kth convergent of a finite simple continued fraction [a0; a1, a2, . . . , an], de-

noted sk = pk/qk, is the rational number corresponding to the continued fraction
[a0; a1, a2, . . . , ak], k ≤ n. Equations (21) through (26) define the canonical way to
construct all sk = pk/qk from all ak.

p−1 = 1 (21)

q−1 = 0 (22)

p0 = a0 = �rI� (23)

q0 = 1 (24)

pk = akpk−1 + pk−2 (25)

qk = akqk−1 + qk−2 (26)

When pk and qk (the numerator and denominator of the kth convergent sk) are
formed as specified by (21) through (26), convergents sk = pk/qk have the following
properties, which are presented without proof.

• Each even-ordered convergent sk = pk/qk = [a0; a1, a2, . . . , ak] is less than
[a0; a1, a2, . . . , an], and each odd-ordered convergent sk is greater than [a0; a1,
a2, . . . , an], with the exception of the final convergent sk, k = n, which is equal
to [a0; a1, a2, . . . , an].

• Each convergent is irreducible; that is, pk and qk are coprime.
• Each qk is greater than qk−1; that is, the denominators of convergents are
ever-increasing. Furthermore, the denominators of convergents increase at a
minimum rate that is exponential (Eq. 27), [5] Theorem 12.

qk ≥ 2
k−1
2 , k ≥ 2 (27)

An intermediate fraction is a fraction of the form
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ipk + pk−1

iqk + qk−1
, i < ak+1. (28)

It can be seen by comparing (28) with (25) and (26) that an intermediate fraction
can be denoted compactly by the continued fraction representation of a convergent,
with the final element adjusted downward. For example, if [a0; a1, a2, . . . , ak−1] and
[a0; a1, a2, . . . , ak−1, ak], k ≤ n, are convergents; [a0; a1, a2, . . . , ak−1, 1], [a0; a1, a2,
. . . , ak−1, 2], . . . , and [a0; a1, a2, . . . , ak−1, ak − 1] are intermediate fractions.

4. CHOOSING RA = H/K SUBJECT TO K ≤ KMAX

Finding the best rational approximation rA = h/k to an arbitrary rI ∈ R
+ subject

only to the constraint k ≤ kMAX is equivalent to the problem of finding the two
members of FkMAX which enclose rI . Potential naive algorithms include building
FkMAX starting at an integer [O(k2

MAX)], building FkMAX starting at a rational
number with a large prime denominator [O(kMAX)], and building the Stern-Brocot
tree [O(kMAX)]. For kMAX of a few hundred or less, any of these algorithms are
satisfactory, and they can be carried out even with ordinary spreadsheet software,
such as Microsoft Excel.
However, for kMAX typical of the more powerful microcontrollers used in con-

sumer electronics (216 or 232), and particularly for kMAX reflecting the integer arith-
metic capability of workstations and supercomputers (232, 264, or larger), O(k2

MAX )
and O(kMAX) algorithms are not computationally viable. This section presents a
novel O(log kMAX) algorithm which is suitable for finding best rational approxima-
tions even in Farey series of very large order, based on the apparatus of continued
fractions.

4.1 Finding Best Rational Approximations With rI ∈/ FkMAX

Theorem 5. For a non-negative rational8 number a/b not in FN which has a
continued fraction representation [a0; a1, a2, . . . , an], the highest-order convergent
sk = pk/qk with qk ≤ N is one neighbor9 to a/b in FN , and the other neighbor in
FN is10

8Although it isn’t discussed in this paper, it isn’t required that a number be rational in order to
apply this theorem. As emphasized by (18), (19), and (20), the process of obtaining continued
fraction partial quotients is essentially a process of determining in which partition a number lies.
All numbers in the same partition—rational or irrational—have the same Farey neighbors in all
Farey series up to a certain order. If the partial quotients of an irrational number can be obtained
up through ak s.t. sk = pk/qk is the highest-order convergent with qk ≤ N , then this theorem
can be applied. Knowledge of all a0 . . . ak is equivalent to the knowledge that the number is in
a partition where all numbers in that partition have the same Farey neighbors in all Farey series
up through order qk+1 − 1.
9By neighbors in FN we mean the rational numbers in FN immediately to the left and immediately
to the right of a/b.
10Theorem 5 is a somewhat stronger statement about best approximations than Khinchin
makes in [5], Theorem 15. We were not able to locate this theorem or a proof in
print, but this theorem is understood within the number theory community. It appears
on the Web page of David Eppstein in the form of a ‘C’-language computer program,
http://www.ics.uci.edu/~eppstein/numth/frap.c. Although Dr. Eppstein phrases the solution
in terms of modifying a partial quotient, his approach is equivalent to (29).
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⌊
N − qk−1

qk

⌋
pk + pk−1⌊

N − qk−1

qk

⌋
qk + qk−1

. (29)

Proof. First, it is proved that the highest-order convergent sk = pk/qk with
qk ≤ N is one of the two neighbors to a/b in FN . sk ∈ FN , since qk ≤ N . By
[5], Theorem 9, the upper bound on the difference between a/b and arbitrary sk is
given by

∣∣∣∣ab − pk

qk

∣∣∣∣ < 1
qkqk+1

. (30)

For two consecutive terms in FN , Kh− Hk = 1. For a Farey neighbor H/K to
sk in FN , (31) must hold.

1
qkN

≤
∣∣∣∣HK − pk

qk

∣∣∣∣ (31)

qk+1 > N , because qk+1 > qk and pk/qk was chosen to be the highest-order
convergent with qk ≤ N . Using this knowledge and combining (30) and (31) leads
to (32).

∣∣∣∣ab − pk

qk

∣∣∣∣ < 1
qkqk+1

<
1

qkN
≤

∣∣∣∣HK − pk

qk

∣∣∣∣ (32)

This proves that sk is one neighbor to a/b in FN . The apparatus of continued
fractions ensures that the highest order convergent sk with qk ≤ N is closer to a/b
than to any neighboring term in FN . Thus, there is no intervening term of FN

between sk and a/b. If k is even, sk < a/b, and if k is odd, sk > a/b.
It must be proved that (29) is the other Farey neighbor. For brevity, only the

case of k even is proved: the case of k odd is symmetrical. (29) is of the form (33),
where i ∈ Z

+.

ipk + pk−1

iqk + qk−1
(33)

k is even, sk < a/b, and the two Farey terms enclosing a/b, in order, are

pk

qk
,
ipk + pk−1

iqk + qk−1
. (34)

Applying the Kh−Hk = 1 test, (35), gives the result of 1, since by theorem ([5],
Theorem 2), qkpk−1 − pkqk−1 = (−1)k.

(qk)(ipk + pk−1)− (pk)(iqk + qk−1) = 1 (35)
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Thus, every potential Farey neighbor of the form (33) meets the Kh − Hk = 1
test. It is also straightforward to show that only potential Farey neighbors of the
form (33) can meet the Kh− Hk = 1 test, using the property that pk and qk are
coprime.
It must be established that a rational number of the form (33) is irreducible.

This result comes directly from (35), since if the numerator and denominator of
(29) or (33) are not coprime, the difference of 1 is not possible.
The denominator of (29) can be rewritten as

N − [(N − qk−1) mod qk] ∈ {N − qk + 1, ..., N} . (36)

It must be shown that if one irreducible rational number—namely, the rational
number given by (29)—with a denominator ∈ {N − qk +1, . . . , N} meets the Kh−
Hk = 1 test, there can be no other irreducible rational number in FN with a larger
denominator which also meets this test.
Given (36), and given that only rational numbers of the form (33) can meet the

Kh− Hk = 1 test, and given that any number of the form (33) is irreducible, the
irreducible number meeting the Kh−Hk = 1 test with the next larger denominator
after the denominator of (29) will have a denominator ∈ {N+1, . . . , N+qk}. Thus,
no other irreducible rational number in FN besides that given by (29) with a larger
denominator ≤ N and which meets the Kh−Hk = 1 test can exist; therefore (29)
is the other enclosing Farey neighbor to a/b in FN .

Theorem 5 suggests an algorithm for determining best approximations to a rat-
ional rI = a/b /∈ FkMAX subject to the constraint k ≤ kMAX .

Algorithm 2.

• k := −1.
• divisor−1 := a.
• remainder−1 := b.
• p−1 := 1.
• q−1 := 0.
• Repeat

• k := k + 1.
• dividendk := divisork−1.
• divisork := remainderk−1.
• ak := dividendk div divisork.
• remainderk := dividendk mod divisork.
• If k = 0 then pk := ak else pk := akpk−1 + pk−2.
• If k = 0 then qk := 1 else qk := akqk−1 + qk−2.

• Until (qk > kMAX).
• sk−1 = pk−1/qk−1 will be one Farey neighbor to a/b in FkMAX . Apply (29) to
obtain the other Farey neighbor.

Algorithm 2 builds the partial quotients ak and convergents sk = pk/qk of a/b
only as far as required to obtain the highest-order convergent with qk ≤ N ; thus
the number of iterations required is tied to kMAX , rather than to the precision of
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a/b. It is easy to see that Algorithm 2 is O(log kMAX), since the the denominators
of convergents qk have a minimum exponential rate of increase (27).11

4.2 Finding Best Rational Approximations With rI ∈ FkMAX

The case where rI ∈ FkMAX corresponds to the case where rI is at the edge of a
partition, in the sense suggested by (18), (19), and (20). In this case, the highest-
order convergent sn = pn/qn = rI ∈ FkMAX , and (29) supplies the right Farey
neighbor to rI if n is even, or the left Farey neighbor to rI if n is odd. In the
former case (8) and (9) can be used to obtain the left Farey neighbor, and in the
latter case (6) and (7) can be used to obtain the right Farey neighbor. The second
half of the proof of Theorem 5 applies.
Thus, finding the neighbors in FkMAX to an arbitrary rI = a/b ∈ FkMAX is also an

O(log kMAX) procedure, and easily accomplished using the apparatus of continued
fractions.

5. CHOOSING RA = H/K SUBJECT TO H ≤ HMAX AND K ≤ KMAX

Up to this point, only the case of constrained k has been considered. However,
in a practical application, h is also typically constrained, usually by the size of
the operands and results that machine multiplication and division instructions can
accomodate.
When h and k are both constrained, h ≤ hMAX ∧ k ≤ kMAX , the set of rational

numbers h/k that can be formed has a convenient and intuitive graphical interpre-
tation (Figure 1 illustrates this interpretation with hMAX = 3 and kMAX = 5).
Each rational number h/k that can be formed under the constraints corresponds
to a point in the integer lattice.
From Figure 1, it is clear that:

• The angle θ of the ray from the origin to (k, h) is monotonically increasing with
respect to the value of h/k, and:

• h/k = tanθ.
• θ = tan−1h/k.

• The smallest rational number that can be formed under the constraints is 0/1,
the smallest non-zero rational number is 1/kMAX , and the largest rational
number is hMAX/1.

11Although Algorithm 2 is the best known algorithm for finding Farey neighbors, it is an over-
simplification to state that Algorithm 2 is O(log kMAX). In the classical sense—speaking only in
terms of numbers of operations and assuming that each type of operation takes the same amount
of time regardless of the data—the algorithm is O(log kMAX). However, when applying the al-
gorithm for a, b, and kMAX much larger than the native data sizes of the computer used, one
must use some sort of arbitrary-precision or long integer calculation package, and the calculation
times of such packages are probably between O(log N) and O(N) with respect to the data values.
Taking this into account, the algorithm may be as poor as O(N log N) for data much larger than
accomodated by the computer used. However, this is not an impediment to practical calcula-
tions. The rational approximation software packaged with this paper (submitted to CALGO) will
find neighbors within the Farey series of order 2128 with a calculation time of just a few seconds
on a personal computer, and will find neighbors within the Farey series of order 21,000 with a
calculation time of less than 60 seconds.
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h

k
1 2 3 4 5

1

2

3
(kMAX, hMAX)

kMAX

θ

hMAX

O

Fig. 1. Integer Lattice Interpretation Of Rational Numbers h/k Formable Under Constraints
h ≤ hMAX And k ≤ kMAX

• Only irreducible rational numbers are directly “visible” from the origin (re-
ducible numbers are hidden “behind” the irreducible numbers, when viewed
from the origin).

• The ascending set of irreducible rational numbers that can be formed subject
to the constraints can be constructed graphically by sweeping a line starting at
θ = 0 through the range 0 ≤ θ < π/2, recording each integer lattice point that
is directly “visible” from the origin.

• For rA = h/k ≤ hMAX/kMAX , the constraint k ≤ kMAX is the dominant
constraint, and the set of formable rational numbers ≤ hMAX/kMAX is simply
FkMAX .

By symmetry in Figure 1, it can be seen that each formable rational number
≥ hMAX/kMAX is the reciprocal of an element of the Farey series of order hMAX .
Thus, it is clear that the set of formable rational numbers under the constraints
h ≤ hMAX ∧ k ≤ kMAX can be built by concatenating a portion of FkMAX with a
portion of FhMAX , but with the terms of FhMAX inverted and reversed in order.
We denote the series formed from FN by inverting each element (except 0/1) and

reversing the order as FN . For example, using this definition,

F3 =
{
. . . ,

3
8
,
2
5
,
3
7
,
1
2
,
3
5
,
2
3
,
3
4
,
1
1
,
3
2
,
2
1
,
3
1

}
. (37)

We denote the series formed by concatenating FkMAX up through hMAX/kMAX

to FhMAX
from hMAX/kMAX through hMAX/1 as FkMAX ,hMAX

.
Note that FkMAX ,hMAX

is the ordered set of all irreducible rational numbers that
can be formed subject to h ≤ hMAX∧k ≤ kMAX . For example, using this definition,
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F5,3 =
{
0
1
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
1
1
,
3
2
,
2
1
,
3
1

}
. (38)

It can be verified that the result in (38) is the same as would be obtained in
Figure 1 by sweeping a line from the origin counterclockwise through 0 ≤ θ < π/2,
recording each point of the integer lattice directly “visible” from the origin.
The following O(log max(hMAX , kMAX)) algorithm is presented for finding the

neighbors in FkMAX ,hMAX
to an arbitrary irreducible rational number a/b.

Algorithm 3.

• If a/b < hMAX/kMAX , apply Algorithm 2 directly;
• Else if a/b > hMAX/kMAX , apply Algorithm 2 using b/a, rather than a/b as

rI , and using N = hMAX rather than N = kMAX , and invert and transpose
the two Farey neighbors obtained;

• Else if a/b = hMAX/kMAX , apply both steps above: the first step to obtain the
left neighbor in FkMAX ,hMAX

and the second step to obtain the right neighbor.

6. CHOOSING RA = H/K ONLY IN AN INTERVAL [L,R]

It is clear from the earlier discussion of the Farey series that the maximum distance
between terms in FkMAX is 1/kMAX , and that this maximum distance occurs only
adjacent to an integer. It is also clear from the discussion of FhMAX

that the
maximum distance between terms is 1.
Thus, when we use FkMAX ,hMAX

to approximate real numbers, in general the
worst-case distance between terms is 1.
In practical applications when rational approximation is used, the approximation

tends to be used over a restricted interval [l � 0, r � hMAX ] rather than over the
full range of the rational numbers that can be formed, [0, hMAX ]. This section
develops novel upper bounds on the distance between terms of FkMAX ,hMAX

in an
interval [l, r]. For simplicity, assume l, r ∈ FkMAX ,hMAX

.
Three distinct cases are developed (Figure 2). The upper bound developed from

Case III is always larger than the upper bound developed from Case II, which is
always larger than the upper bound developed from Case I; so if only the absolute
maximum error over the interval [l, r] is of interest, only the highest-numbered
case which applies needs to be evaluated. However, some applications may have
different error requirements in different regions of the interval [l, r], and for these
applications it may be beneficial to analyze more than one case.

6.1 Case I: rI < hMAX/kMAX

With rI < hMAX/kMAX , k ≤ kMAX is the dominant constraint, and the neighbors
available to rI are simply the terms of FkMAX . If [l, r] ∩ [0, hMAX/kMAX ] includes
an integer, clearly the maximum distance from rI to the nearest available term of
FkMAX ,hMAX

is given by

∣∣∣∣hk − rI

∣∣∣∣ ≤ 1
2kMAX

. (39)
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h

k

(kMAX, hMAX)

kMAX

hMAX

O

h=k

Case I

Case IICase III

Fig. 2. Three Cases For Bounding Distance Between Terms In FkMAX ,hMAX

If [l, r] ∩ [0, hMAX/kMAX ] does not include an integer, it can be shown that the
maximum distance between Farey terms is driven by the rational number with the
smallest denominator in the interval.
For two consecutive terms p/q and p′/q′ in FkMAX , p′q − pq′ = 1 (Theorem 1),

so that

p′

q′
− p

q
=

p′q − pq′

qq′
=

1
qq′

. (40)

By Theorem 3, q + q′ > kMAX , therefore

1
qkMAX

≤ 1
qq′

<
1

q(kMAX − q)
. (41)

Let qMIN be the smallest denominator of any rational number ∈ FkMAX in the
interval [l, r]. It is then easy to show that for any consecutive denominators q, q′

which occur in FkMAX in the interval [l, r],

1
qq′

<
1

qMIN max(qMIN , kMAX − qMIN )
. (42)

Thus, the upper bound on the distance between consecutive terms of FkMAX in an
interval [l, r] is tied to the minimum denominator of any rational number ∈ FkMAX

in [l, r].
Note that clearly qMIN ≤ 1/(r−l), so for most practical intervals [l, r], the search

for qMIN would not be computationally expensive. However, applications could
arise where an approximation is used in an extremely narrow interval, and having
an algorithm available that is computationally viable for such cases is advantageous.
For example, locating the rational number ∈ F220,000 with the smallest denominator
in an interval of width 2−10,000 could be a serious computational problem.
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To locate qMIN in [l, r], note that at least one rational number with qMIN as
a denominator in [l, r] is the best approximation of order qMIN to the midpoint
of the interval, (l + r)/2.12 By theorem ([5], Theorem 15), every best approxima-
tion of a number is a convergent or intermediate fraction of the continued fraction
representation of the number. We seek the convergent or intermediate fraction of
(l + r)/2 with the smallest denominator that is in the interval [l, r].
The convergents and intermediate fractions of (l + r)/2 are naturally arranged

in order of increasing denominator. However, it would be inefficient to test every
intermediate fraction for membership in [l, r], as partial quotients ak are unlimited
in size and such an algorithm may not be O(log kMAX). Instead, since intermediate
fractions are formed using the parameterized expression (ipk + pk−1)/(iqk + qk−1),
and since intermediate fractions are ever-increasing or ever-decreasing with respect
to the parameter i, the smallest value of i which will create an intermediate fraction
potentially within [l, r] can be directly calculated. Only the intermediate fraction
formed with this calculated value of i needs to be tested for membership in [l, r].
Let lN and lD be the numerator and denominator of l, and let rN and rD be

the numerator and denominator of r. In the case of k even; sk < l < (l + r)/2
(otherwise sk would have been identified as ∈ [l, r], see Algorithm 4); sk+1 ≥
(l+ r)/2; with increasing i, (ipk + pk−1)/(iqk + qk−1) forms a decreasing sequence;
and the inequality we seek to solve is

ipk + pk−1

iqk + qk−1
≤ rN

rD
. (43)

Solving (43), the smallest integral value of i that will suffice is

i =
⌈
rNqk−1 − rDpk−1

rDpk − rN qk

⌉
. (44)

Similarly, for k odd, the sequence is increasing, and the inequality and solution
are

ipk + pk−1

iqk + qk−1
≥ lN

lD
→ i =

⌈
lNqk−1 − lDpk−1

lDpk − lNqk

⌉
. (45)

(43), (44), and (45) suggest the following continued fraction algorithm for finding
a rational number with the smallest denominator in an interval [l, r].

Algorithm 4.

• Calculate all partial quotients ak and all convergents sk = pk/qk of the midpoint
of the interval, (l + r)/2.

• For each convergent sk = pk/qk, in order of increasing k:
• If sk = pk/qk ∈ [l, r], sk is a rational number with the lowest denominator,
STOP.

• If k is even,

12Thanks to David M. Einstein and David Eppstein for this observation, contributed via the
sci.math newsgroup, which is the linchpin of Algorithm 4.
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Fig. 3. Graphical Interpretation Of Case II: hMAX/kMAX < rI < 1

• Calculate i according to (44). If i < ak+1 and the intermediate fraction
(ipk + pk−1) / (iqk + qk−1) ≥ l, this intermediate fraction is a rational
number with the lowest denominator, STOP.

• Else if k is odd,
• Calculate i according to (45). If i < ak+1 and the intermediate fraction
(ipk + pk−1) / (iqk + qk−1) ≤ r, this intermediate fraction is a rational
number with the lowest denominator, STOP.

Algorithm 4 is approximately O(log kMAX), since there are a fixed number of
steps per convergent, and the maximum number of convergents is O(log kMAX).
Once a rational number with the smallest denominator qMIN is located, (41) can
be applied to bound |rA − rI |; namely,

∣∣∣∣hk − rI

∣∣∣∣ < 1
2qMIN max(qMIN , kMAX − qMIN )

. (46)

6.2 Case II: hMAX/kMAX < rI < 1

If hMAX/kMAX < rI < 1, a graphical argument (Figure 3) can be used to more
tightly bound the maximum distance between terms of FkMAX ,hMAX

.
In this case, a formable term at or to the left13 of rI is represented by the point

(�hMAX/rI� + 1, hMAX) in the integer lattice, and a formable term at or to the
right of rI is represented by the point (�hMAX/rI�, hMAX) in the integer lattice.
Thus, the maximum distance between neighboring terms in FkMAX ,hMAX

is given
by the difference of these two terms,

hMAX⌊
hMAX

rI

⌋ − hMAX⌊
hMAX

rI

⌋
+ 1

=
hMAX⌊

hMAX

rI

⌋2

+
⌊

hMAX

rI

⌋ , (47)

and the maximum distance from rI to a neighboring term is given by

13To the left on the number line, but to the right in Figure 3.
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∣∣∣∣hk − rI

∣∣∣∣ ≤ hMAX

2
(⌊

hMAX

rI

⌋2

+
⌊

hMAX

rI

⌋) . (48)

Note that Case II will exist only if hMAX/kMAX < 1.

6.3 Case III: 1 < hMAX/kMAX < rI

It can be established graphically, using the coordinate system of Figure 1 or Figure
2, that the line h = rIk intercepts the line h = hMAX at the point (hMAX/rI , hMAX).
It is clear from a graphical argument that all of the terms of the Farey series of
order �hMAX/rI� are available as neighbors of rI . Therefore,

∣∣∣∣hk − rI

∣∣∣∣ ≤ 1

2
⌊

hMAX

rI

⌋ . (49)

7. END-TO-END APPROXIMATION ERROR

A rational approximation requires an integer domain and range, and there are three
sources of error inherent in such an approximation:

• Input quantization error, as the input to the approximation is restricted to Z
+.

• Error in selecting rA = h/k, as in general it isn’t possible to choose rA = rI .
• Output quantization error, as the remainder of the division of hx by k is dis-
carded, and the output must be ∈ Z

+.

To model the end-to-end approximation error, a model function is introduced
which represents the function we wish to approximate,

F (x) = rIx. (50)

However, the approximation necessarily involves quantizing the input x, as well
as the result of the integer division:

J(x) = �rA �x�� =
⌊
h �x�
k

⌋
. (51)

Quantization of a real argument x which is not necessarily rational is treated by
noting that quntization introduces an error ε ∈ [0, 1):

�x� = x− ε; ε ∈ [0, 1). (52)

Quantization of a rational argument a/b is treated by noting that the largest
quantization error ε occurs when a is one less than an integral multiple of b:

⌊a

b

⌋
=

a

b
− ε; ε ∈

[
0,

b− 1
b

]
. (53)
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The difference function J(x) − F (x), can be stated as in (54) or (55). The two
quantizations in (54) can be treated by introducing ε1 and ε2 to yield (55). Note
that ε1 and ε2 are independent, meaning for this application that in general rI ,
rA = h/k, and x can be chosen so as to force any combination of ε1 and ε2, so that
no combinations of ε1 and ε2 can be excluded.

J(x)− F (x) =
⌊
h �x�
k

⌋
− rIx (54)

J(x)− F (x) =
h(x− ε1)

k
− ε2 − rIx; ε1 ∈ [0, 1); ε2 ∈

[
0,

k − 1
k

]
(55)

Choosing the extremes of ε1 and ε2 so as to minimize and maximize the difference
function bounds the approximation error (56).

J(x) − F (x) ∈
(
(rA − rI)x− rA − k − 1

k
, (rA − rI)x

]
(56)

Minimizing and maximizing (56) over a domain of [0, xMAX ] leads to (57).

J(x)− F (x)|x∈[0,xMAX ] ∈




(
(rA − rI)xMAX − rA − k−1

k , 0
]
, rA < rI

(−rA − k−1
k , 0

]
, rA = rI

(−rA − k−1
k , (rA − rI)xMAX

]
, rA > rI

(57)

Thus, given an rI ∈ R
+ and a rational approximation to rI , rA = h/k, the error

introduced by this rational approximation used over a domain [0, xMAX ] can be
bounded.

8. DESIGN EXAMPLE

A design example is presented to illustrate the methods presented. An rI specified
with only modest precision and an hMAX and kMAX of only modest size are used
to avoid a large number of partial quotients or large integers.14

Design Example: Assume that real numbers are to be approximated by rational
numbers in the interval [0.385, 2.160], subject to hMAX = 193 ∧ kMAX = 500.
Bound |rA − rI | under these constraints. Find the best rational approximations to
1/π ≈ 0.31830989 and 2/π ≈ 0.63661977 under the same constraints.

Solution: In this example, Case I, Case II, and Case III (Sections 6.1, 6.2, and
6.3) apply. Case III will dominate the upper bound on the error in selecting rA,
but it is instructive to work through Case I and Case II.

14The rational approximation software submitted with this paper will handle rational approxima-
tions involving hundreds of digits and hundreds of partial quotients. However, such approximations
make unsuitable examples because of the length, the difficulty in typesetting huge integers and
rational numbers, and because the examples can’t be carried out manually by a reader.
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Table 1. Partial Quotients And Convergents Of 0.3855 (Midpoint Of The Interval [0.385, 0.386])

Index dividendk divisork ak remainderk pk qk

(k)

-1 N/A 771 N/A 2000 1 0
0 771 2000 0 771 0 1
1 2000 771 2 458 1 2
2 771 458 1 313 1 3
3 458 313 1 145 2 5
4 313 145 2 23 5 13
5 145 23 6 7 32 83
6 23 7 3 2 101 262
7 7 2 3 1 335 869
8 2 1 2 0 771 2000

To apply the results from Case I, it is necessary to find a rational number with
the smallest denominator in the interval [l = 0.385, r = 193/500 = 0.386]. The
midpoint of the interval is (l + r)/2 = 0.3855 = 771/2000.
Table 1 shows the generation of the partial quotients and convergents of the

midpoint, 771/2000, using Algorithm 2.
Algorithm 4 can be applied to locate the fraction in [l, r] with the smallest de-

nominator. s0 = 0/1 /∈ [l, r]. The intermediate fraction (p0 + p−1)/(q0 + q−1) =
1/1 /∈ [l, r]. s1 = 1/2 /∈ [l, r]. s2 = 1/3 /∈ [l, r]. s3 = 2/5 /∈ [l, r]. The intermediate
fraction (p3 + p2)/(q3 + q2) = 3/8 /∈ [l, r]. s4 = 5/13 /∈ [l, r]. (44) can be applied
to determine the lowest value of the parameter i for which an intermediate fraction
may be in [l, r]:

i =
⌈
(rN = 193)(q3 = 5)− (rD = 500)(p3 = 2)
(rD = 500)(p4 = 5)− (rN = 193)(q4 = 13)

⌉
=

⌈−35
−9

⌉
= 4. (58)

Thus, it is only necessary to examine the intermediate fraction (4p4 + p3)/(4q4 +
q3) for potential membership in [l, r]. This intermediate fraction, 22/57 ≈ 0.385965
∈ [l, r]. Thus, the fraction with the lowest denominator in the interval is 22/57,
and qmin = 57.
Application of (46) yields

∣∣∣∣hk − rI

∣∣∣∣ <
(

1
2qMIN max(qMIN , kMAX − qMIN )

=
1

(2)(57)(500− 57)
=

1
50, 502

)
.

(59)

Note that the 1/50,502 maximum error in placing rA is much better than the
1/1,000 worst-case error for F500 in general without restrictions on the interval.
Case II and Case III aren’t as complicated as Case I—applying these cases is a

simple matter of substitution into (48) or (49). Case II and (48) apply, but the error
bounds from Case III will be larger, so Case II is not evaluated. Case III applies:
the line h = rIk intersects the line h = hMAX at the point (hMAX/rI , hMAX) =
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Table 2. Partial Quotients And Convergents Of 31,830,989/100,000,000 (A Rational Approxi-
mation To 1/π)

Index dividendk divisork ak remainderk pk qk

(k)

-1 N/A 31,830,989 N/A 100,000,000 1 0
0 31,830,989 100,000,000 0 31,830,989 0 1
1 100,000,000 31,830,989 3 4,507,033 1 3
2 31,830,989 4,507,033 7 281,758 7 22
3 4,507,033 281,758 15 280,663 106 333
4 281,758 280,663 1 1,095 113 355
5 280,663 1,095 256 343 29,034 91,213
6 1,095 343 3 66 87,215 273,994
7 343 66 5 13 465,109 1,461,183
8 66 13 5 1 2,412,760 7,579,909
9 13 1 13 0 31,830,989 100,000,000

(193/2.160, 193), thus all terms of the Farey series of order �193/2.160� = 89 are
available for selection. Therefore, applying (49),

∣∣∣∣hk − rI

∣∣∣∣ ≤ 1
2× 89

≈ 0.0056. (60)

Thus, if F500,193 is used to approximate real numbers over the interval [0.385,
2.160], an upper bound on |rA−rI | is 1/178 ≈ 0.0056. Note that Case III dominates,
and that the upper bound on |rA − rI | varies within the interval.
To find the best rational approximations to 1/π in F500,193, note that 1/π <

193/500, so all of the terms in F500 are available. Table 2 shows the partial quotients
and convergents of 1/π, using 0.31830989 as a rational approximation of 1/π. s4 is
the highest-order convergent with qk ≤ 500, so s4 = 113/355 is one Farey neighbor
to 1/π in F500. Applying (29) to generate the other neighbor in F500 yields 106/333.
Note that 113/355− 1/π ≈ −3 × 10−8 and 106/333− 1/π ≈ 8 × 10−6 (the errors
are quite small).
To find the best rational approximations to 2/π in F500,193, note that 2/π >

193/500, so the second clause of Algorithm 3 applies. Table 3 shows the partial
quotients and convergents of π/2, using 1/0.63661977 as a rational approximation
of π/2. s3 is the highest-order convergent with qk ≤ 193, so s−1

3 = (11/7)−1

is one neighbor to 2/π in F193. Applying (29) to generate the reciprocal of the
other neighbor in F193 yields 300/191, implying that 191/300 is the other neighbor.
7/11− 2/π ≈ −3× 10−4. 191/300− 2/π ≈ 5× 10−5.
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Table 3. Partial Quotients And Convergents Of 100,000,000/63,661,977 (A Rational Approxi-
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and Robert Kakos for support from Wayne State University’s College Of Engineer-
ing; Paulette Groen and Paula Smith for support from Visteon; Bob Crosby for
support from Texas Instruments; Klaus-Peter Zauner, Andrea Blome, Una Smith,
Karsten Tinnefeld, and Axel Franke for other tool and logistical support; and the
management team at Visteon for allowing us to pursue this effort in the workplace.
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